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Abstract. — We consider a set Γ of points in the projective plane obtained as the
intersection of two curves of the same degree. We blow-up the projective plane at
that points to get SΓ. We consider the foliation F γ in SΓ obtained from the pencil of
the two curves above. Under generic conditions F γ is isolated in the space of foliations
of SΓ.

Résumé (Rigidité des fibrations). — Nous considérons l’ensemble Γ des points du plan
projectif obtenu comme intersection de deux courbes du même degré. Nous éclatons
cet ensemble pour obtenir la surface SΓ et nous considérons sur SΓ le feuilletage
F γ obtenu à partir du pinceau de deux courbes précédentes. Sous des conditions de
généricité F γ est isolé dans l’espace des feuilletages de SΓ.

1. Introduction

Let Γ be a finite set of points in the projective plane P2 defined as the intersection
of two transverse curves of the same degree (we say that Γ is a complete intersection
set); let also π : SΓ → P2 be the blow-up of P2 at the points of Γ. The surface SΓ

admits a natural foliation eF Γ: the strict transform of the pencil F Γ : FdG−GdF = 0

generated by the curves {F = 0} and {G = 0} that define Γ.

A natural problem is to understand the families of reduced foliations of surfaces
(in the sense of [2]) containing (SΓ,

eF Γ); this is related to studying the foliations of
P2, in a neighborhood of F Γ, that have radial singularities close to the points of Γ.

We consider in this paper the particular situation where the surface SΓ does not
change in the family (or, equivalently, we look at the foliations of P2 with radial

2010 Mathematics Subject Classification. — 37F75.
Key words and phrases. — Algebraic foliations, invariant curves, singularities, indexes.

The first author is supported by Profix-CNPq.

© Astérisque 323, SMF 2009



292 J.V. PEREIRA & P. SAD

singularities at the points of Γ). The leaves of eF Γ are fibers of the holomorphic
fibration (F/G) ◦ π → P1. In order to study a deformation eF of this fibration (in the
space of foliations of SΓ) we analyze how a generic fiber ‹C of eF Γ is intersected by t
he leaves of eF . If ‹C is not eF -invariant then N eF .

‹C = tang( eF , ‹C) + χ(‹C), where N eF

is the normal bundle of eF , χ(‹C) is the Euler characteristic of ‹C and tang( eF , ‹C) is
the number of tangency points between eF and ‹C. Notice that tang( eF , ‹C) ≥ 0 and
also N eF .

‹C = N eF Γ
.‹C by continuity. Since ‹C is eF Γ-invariant, N eF Γ

.‹C = Z( eF , ‹C) +‹C.‹C, where Z( eF , ‹C) denotes the number of singularities of eF Γ along ‹C, and we get
that tang( eF , ‹C) = −χ(‹C).

Let c ∈ N be the common degree of the polynomials F and G. When c = 1 or
c = 2 we have χ(‹C) = 2 and we get a contradiction unless eF = eF Γ ([12]). When
c = 3 we have tang( eF , ‹C) = −χ(‹C) = 0 and therefore eF is transverse to the generic
fiber of eF Γ, implying that the regular fibers are all isomorphic; this is not possible
for a generic choice of F and G, and we conclude again that eF = eF Γ in this case
(see [11] for a related result). When c ≥ 4 this type of argument fails since χ(‹C) < 0.
Nevertheless we are able to prove for c ≥ 3:

Theorem 1. — If Γ is a generic complete intersection set then F Γ is an isolated point
of the space of foliations of SΓ, i.e., F Γ is rigid.

In the statement generic complete intersection set refers to the set of base points of
a generic element of the space of lines of PH0(P2, OP2(c)); in other words, the couple
(F,G) of polynomials of degree c ∈ N is generically chosen in order to define Γ. In §3.2
we exhibit some examples of non-rigidity to show that the hypothesis of genericity is
necessary.

We have no result when the surface SΓ changes in the family of reduced foliations;
but still we should mention that for c = 3 we can only deform eF Γ as a fibration
(starting with a generic choice of Γ). In fact, eF Γ has Kodaira dimension equal to 1
and this dimension is constant along the family ([2]). We then apply the Classification
Theorem ([1]) to conclude that any foliation in the family is an elliptic fibration.

The proof of Theorem 1 relies on the analysis of the indexes of a plane foliation
along a smooth invariant algebraic curve. Let {F = 0} be such a curve, of degree
c ∈ N, containing singularities of the foliation at the intersection points with another
curve {G = 0} of degree k ≤ c. We prove then that if (F,G) is generically chosen
the set of indexes is sufficient to identify completely the foliation (Theorem 2.2).
Application of this result in order to prove Theorem 1 is not immediate; we have to
show first that the defining curves for the set Γ are invariant curves of the foliation.
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2. Variation of Indexes

2.1. Division Lemma. — All foliations, unless stated otherwise, are supposed to
have isolated singularities.

Let C ⊂ P2 be a smooth curve of degree c ∈ N, invariant by a plane projective
foliation F ∈ Fol(d) of degree d ∈ N. The Lemma below can be implicitly found in
[4, Proof of Proposition 3]; we assume that F is defined by ω = 0, ω a homogeneous
1-form of C3 of degree d+ 1 (or by a homogeneous vector field of C3 of degree d ∈ N),
and that C is defined by F = 0, F a homogeneous polynomial of degree c ∈ N. Let
us denote by R the radial vector field of C3.

Lemma 2.1. — There exist a polynomial G of degree d−c+2 and a 1-form η of degree
d− c+ 1, both homogeneous, such that

ω = GdF − deg(F )

deg(G)
FdG+ Fη and iR(η) = 0.

Furthermore, the foliation F η defined by η = 0 depends only on F and C when
d ≤ 2c− 2.

Proof. — It follows from ([4, Proposition 1]) that there exist a homogeneous poly-
nomial G of degree d − c + 2 and a homogeneous 1-form α of degree d − c + 1 such
that

(1) ω = GdF + Fα .

After contracting the above expression with the radial vector field we obtain

deg(F )FG+ FiRα = 0 ,

We rewrite (1) as

ω = GdF − deg(F )

deg(G)
FdG+ F

Å
α+

deg(F )

deg(G)
dG

ã
.

and define η := α+ deg(F )
deg(G)dG; it follows that iR(η) = 0.

Let us replace (1) by ω′ = G′dF ′+F ′α′, where ω′ = λω and F ′ = µF for λ, µ ∈ C.
Consequently:

ω =
(µ
λ
G′
)
dF + F

(µ
λ
α′
)

= GdF + Fα

and (µ
λ
G′ −G

)
dF = F

(
α− µ

λ
α′
)
.

From
(
µ
λG
′ −G

)
|C ≡ 0 we have µ

λG
′ − G = P.F for some homogeneous polynomial

P ; two possibilities arise:
• d < 2c− 2; therefore µ

λG
′ = G , µλα

′ = α and we get

η′ = α′ +
deg(F )

deg(G)
dG′ =

µ

λ
η.
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• d = 2c − 2, so that µ
λG
′ − G = aF , α − µ

λα
′ = adF for a ∈ C. It follows that

α− µ
λα
′ = µ

λdG
′ − dG and again η′ = µ

λη.

We observe that F η may have a curve of singularities.

Our results follow from the analysis of the behavior of F η with respect to C when
d ≤ 2c− 2. For the moment we remark that:
• the singularities of F contained in C are the points of {G = 0} ∩ C.
• C is not contained in the singular set of F η (because deg(η) < deg(F )).
• C is not F η-invariant (because otherwise deg(C) ≤ deg( F η) + 1, see [4], or
c ≤ d − c + 1). Let us write k = deg(G) = d − c + 2 for simplicity, so that
deg( F η) = k−2. Since tang( F η, C) = N F η .C−χ(C) = k.c−

Ä
2− 2 (c−1)(c−2)

2

ä
,

we find tang( F η, C) = c(k+ c− 3); the tangency points between C and F η are
given by the common solutions of F = 0 and dF (Zη) = 0 (Zη is the homogeneous
vector field of C3 of degree k − 2 which defines F η).

2.2. Indexes and Foliations. — In [13] we have proved the existence of foliations
of sufficiently high degree with prescribed linear holonomy group with respect to a
given curve. Here we will consider the opposite situation when the degree of the curve
is comparable to the degree of the foliation. More precisely we will consider foliations
of degree d ∈ N which have an invariant smooth curve of degree c ∈ N such that
d ≤ 2c − 2 (remark that in all cases c ≤ d + 1). This inequality is equivalent to
Z( F , C) ≤ c2. As already pointed out it implies that the decomposition given by
Lemma 2.1 is essentially unique.

Let us take a pair of transverse algebraic curves C = {F = 0} and E defined by
polynomials of degree c ∈ N and k ∈ N respectively; C is supposed to be a smooth
curve and F a reduced polynomial. Denote by FolC,C∩E(d) the space of foliations of
degree d = c+ k− 2 which leave C invariant and have C ∩E as the singular set along
C. We define the Index Map I (C,E) = I as

I : FolC,C∩E(d) → A(C ∩ E,C)

F 7→ (p 7→ i( F , C, p))

where A(C ∩E,C) is the space of maps from Γ to C and i( F , C, p) is in the index of
F with respect to C at the point p (cf. [3]).

According to Lemma 2.1 , a foliation F ∈ FolC,C∩E(d) is defined by a 1-form
ω = GdF − (c/k)FdG + Fη = 0; we may assume that E = {G = 0}. A simple
computation shows that

(2) i( F , C, p) =
c

k
− Res

Å( η
G

)
|C
, p

ã
,

where
(
η
G

)
|C means i∗

(
η
G

)
for the inclusion i : C → P2.
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When C and E are transverse to each other at p ∈ C ∩ E, we have

(3) i( F , C, p) =
c

k
⇔ i∗η (p) = 0

The equality i∗η (p) = 0 means that F η is tangent to C at p.

If the foliation is the pencil F Γ : GdF −(c/k)FdG = 0, all k.c indexes at the points
of C ∩ E are equal to c/k; a natural question to ask is whether the converse is true.
This is not always the case (see [14] for a counterexample). Before stating the main
result of this Section, we need a lemma; set Sl = H0(P2, O(l)) and Sl = PH0(P2, O(l)))
for l > 0.

Lemma 2.2. — Let c ≥ k. There exists a Zariski open subset U0(c, k) ⊂ Sc × Sk such
that if (C,E) ∈ U0(c, k) then C and E are transverse to each other and no foliation
of degree k − 2 is tangent to C at the points of C ∩ E.

Proof. — Let Xh(n) be the set of homogeneous vector fields of C3 of degree n, and
H the set

{(F,G) ∈ Sc × Sk;∃(Z,A,B) ∈ Xh(k − 2)× Sk−3 × Sc−3; dF (Z) = A.F +B.G}
Then H is an algebraic subvariety of Sc×Sk. Let us show that H is a strict subvariety.
For that we take F0 ∈ Sc as the equation of a plane rational curve of degree c with
nodal singularities and G0 defining a plane curve of degree k which is transverse to
{F0 = 0}. We know from the genus formula that {F0 = 0} has (c−1).(c−2)

2 nodal
singularities. If (F0, G0) ∈ H, one has Df0(Z0) = A0.F0 +B0.G0 for a (Z0, A0, B0) ∈
Xh(k − 2)× Sc−3 × Sk−3. Let us compute the number of intersection points between
{dF0(Z0) = 0} and {F0 = 0}:
• k.c points of {F0 = 0} ∩ {G0 = 0}, which are smooth points of {F0 = 0}.
• (c− 1)(c− 2) points corresponding to the nodal singularities of {F0 = 0}

We have then k · c+ (c− 1) · (c− 2) = (k + c− 3) · c, contradiction.
Let now U(c, k) be the open subset of Sc×Sk of pairs of curves (C,E) such that C

and E are transverse to each other; finally we set U0(c, k) = U(c, k) ∩ (Sc × Sk \H).
Consider (C̄, Ē) = ({F̄ = 0}, {Ḡ = 0}) ∈ U0(c, k) and suppose that dF̄ (Z̄)(p) = 0 at
all points in C̄ ∩ Ē for some Z̄ ∈ Xh(k − 2). By Noether’s Theorem ([6]), dF̄ (Z̄) =

Ā.F̄ + B̄.Ḡ for some (Ā, B̄) ∈ Sc−3 × Sk−3, so that (C̄, Ē) ∈ H, contradiction unless
Z̄=0.

Remark. — The argument above is inspired in Severi’s idea to prove the Brill-
Noether Theorem ([8], p. 240–244).

We have as a consequence:

Theorem 2. — Let c ≥ k. There exists a Zariski open subset U1(c, k) ⊂ Sc × Sk such
that if (C,E) ∈ U1(c, k) then C is smooth, C and E are transverse to each other and
I (C,E) is injective.
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