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TRAVAUX DE ZINK

by William MESSING

1. INTRODUCTION AND PRELIMINARY DEFINITIONS AND

RESULTS

Fix a prime number p. All rings considered will be Z(p)-algebras. If R is a ring we

will consider p-divisible groups overR and in particular those which are formal groups.

If 1
p ∈ R, then p-divisible groups are étale and consequently given by continuous

representations ρ : π1(Spec(R)) → GLh(Zp). Hence we shall assume p is either

nilpotent in R or R is separated and complete for a topology having a neighborhood

basis of 0 consisting of ideals and that p is topologically nilpotent.

With these conventions, the aim of the various Dieudonné theories is to clas-

sify the category of p-divisible groups over R via functors to categories living in

the realm of (semi)linear algebra. One should think of them as analogous to the

functor G 7→ Lie(G) which establishes an equivalence of categories between formal

groups and Lie algebras when R is a Q-algebra. We will not give an overview of

the various Dieudonné theories, but rather concentrate on the most recent, Zink’s

theory of displays. Nevertheless it will be necessary for us to relate Zink’s theory to

Cartier’s theory and to the crystalline theory. We refer the reader to [Ta], [Ser], [Gr1],

[Gr2], [Dem], [Fon1] for p-divisible groups, to [Car1], [Car2], [Haz], [Laz], [Z1], [Z2]

for Cartier theory, to [Gr1], [Gr2], [MM], [M], [BBM], [BM1], [BM2], [dJ2], [dJM] for

crystalline Dieudonné theory.

If R is a perfect field of characteristic p, these theories are, for p-divisible groups

(formal in the case of Cartier’s theory), all equivalent. Indeed it was one of Zink’s

motivations in developing his theory to relate the Cartier theory to the crystalline

theory. But, in establishing properties of his theory, he uses both the Cartier and

the crystalline theories. Hence there is a symbiotic relationship between the three

theories.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



342 W. MESSING

We refer to [Bour] for the standard facts about the Witt vector ring, W (R). We

write wn : W (R) → R for the ghost component maps, f : W (R) → W (R) for the

Frobenius ring endomorphism and v : W (R) → W (R) for the additive Verschiebung

endomorphism. Let IR = Ker(w0) = im(v). If a ∈ R, [a] denotes its Teichmüller

representative.

Lemma 1.1. — If R is separated and complete in the p-adic topology, then W (R) is

separated and complete in both its p-adic and IR-adic topologies. If p is nilpotent in

R, these topologies coincide and it is finer than the v-adic topology.

Definition 1.2. — A display P over R is a quadruple (P,Q, F, F1) where P is a

finitely generated projective W (R)-module, Q a submodule, F : P → P , F1 : Q → P

are f -semilinear such that

(i) IR P ⊂ Q.

(ii) 0 → Q/IR P → P/IR P → P/Q→ 0 is a split sequence of R-modules.

(iii) P is generated by im(F1).

(iv) F1(v(ξ)x) = ξ F (x) for ξ ∈ W (R), x ∈ P .

If u : M → N is a f -semilinear map of W (R)-modules, we set M (1) =

W (R) ⊗f,W (R) M for the extension of scalars using f and denote by u♯ : M (1) → N

the associated linear map.

With the obvious notion of morphisms, displays form an additive category and, if we

define a morphism of displays u : P ′ → P to be an admissible monomorphism (resp.

epimorphism) provided u : P ′ → P is injective (resp. surjective) and u−1(Q) = Q′

(resp. u(Q′) = Q), we equip DisplaysR with the structure of an exact category.

Definition 1.3. — A normal decomposition for a display P over R is a direct sum

decomposition P = L⊕ T such that Q = L⊕ IR T .

If R is a p-adic ring, in particular if p is nilpotent in R, normal decompositions

always exist. This is a consequence of the fact that finitely generated projective

modules can always be lifted for surjections A→ B whose kernel is a nilideal or such

that A is separated and complete for the topology given by powers of the kernel.

Examples.– (i) The display corresponding to the formal multiplicative group G =

(W (R), IR, f, v
−1).

(ii) If R = k, a perfect field of characteristic p, M 7→ PM = (M,V (M), F, V −1) es-

tablishes an equivalence of categories between Dieudonné modules over k and displays

over k.

From now on we assume p is nilpotent in R, unless we explicitly state the contrary.
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If u : R → R′ is a ring homomorphism and P is a display over R, the base

changed display u∗(P) is the display over R′, P ′ = (P ′, Q′, F ′, F ′1), where P ′ =

W (R′) ⊗W (R) P , Q′ = Ker(P ′ → R′ ⊗R P/Q), F ′ = f ⊗ F and F ′1 is determined by

F ′1
(
v(ξ) ⊗ x

)
= ξ ⊗ F (x) , ξ ∈W (R′) , x ∈ P

and

F ′1
(
ξ ⊗ y

)
= f(ξ) ⊗ F1(y) , ξ ∈W (R′) , y ∈ Q.

Using a normal decomposition, it is easy to show that F ′1 exists and P ′ is a display.

Definition 1.4. — Let P,P ′ be displays over R. A bilinear form of displays

( , ) : P × P ′ → G is a bilinear map P×P ′ → W (R) such that v(F1y, F
′
1y
′) = (y, y′)

for y ∈ Q, y′ ∈ Q′.

If P is a display over R, its dual display Pt = (P∨, Q̂, F, F1) where P∨ =

HomW (R)(P,W (R)), Q̂ = {z ∈ P∨|z(Q) ⊂ IR} and F and F1 are determined by

(F1x, Fz) = f(x, z) for x ∈ Q , z ∈ P∨

(Fx, Fz) = pf(x, z) for x ∈ P , z ∈ P∨

(Fx, F1z) = f(x, z) for x ∈ P , z ∈ Q̂

v(F1x, F1z) = (x, z) for x ∈ Q , z ∈ Q̂.

We have a canonical isomorphism

Bil(P,P ′; G ) ≃ Hom(P ′,Pt).

Proposition 1.5. — There is a unique linear map V ♯ : P → P (1) determined by

V ♯(ξFx) = pξ ⊗ x, V ♯(ξF1y) = ξ ⊗ y, for ξ ∈W (R), x ∈ P , y ∈ Q.

This is established by taking a normal decomposition P = L ⊕ T , showing that

F ♯1 ⊕ F ♯ : L(1) ⊕ T (1) → P is bijective and defining V ♯ to be the composite

(id ⊕ p · id) ◦ (F ♯1 ⊕ F ♯)−1 : P → L(1) ⊕ T (1) = P (1).

One has F ♯ ◦ V ♯ = p · idP , V ♯ ◦ F ♯ = p · idP (1) . If P (i) is the scalar extension of P

using f i, then V ♯ gives rise to V ♯i : P (i) → P (i+1).

Definition 1.6. — P satisfies the nilpotence condition or P is a nilpotent display

provided there is an N such that V ♯N ◦ V ♯N−1 ◦ · · · ◦ V ♯ is zero modulo IR + pW (R).

Remark 1.7. — In [Z5], displays were called 3n-displays (3n for“not necessarily nilpo-

tent”) and nilpotent displays were called displays. We follow Zink’s more recent ter-

minology (cf. his Paris 13 lectures of February, 2006) here. Also in [Z5], F1 was

denoted by V −1. Zink and Langer have initiated a theory of higher displays, [LZ2],

in which P = P0, Q = P1 and there are higher Pi and Fi : Pi → P . For this reason

we write, following Zink, F1 instead of his original V −1.
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Remark 1.8. — Locally on Spec(R), if L⊕T is a normal decomposition we will have L

and T free modules and if T has basis {e1, . . . , ed} and L has basis {ed+1, . . . , eh}, the

map F ♯1⊕F ♯ will be expressed in terms of these bases by a matrix (αij) ∈ GLh(W (R)).

Conversely any such invertible matrix will determine a display. If the matrix (αij)

has inverse (βkℓ), and B is the (h − d) × (h − d) matrix with entries in R/pR given

by B = (w0(βkℓ))mod p)k,ℓ=d+1,...,h, then P is nilpotent if and only if there is an N

such that

B(pN ) . . . B = 0,

where B(pi) is the matrix obtained by applying the i-th iterate of Frobenius to B.

If ei is a basis for a free module over the Cartier ring, then the relations

Fei =
∑
αjiej , i = 1, . . . d ;

ei = V

(∑
αjiej

)
, i = d+ 1, . . . h

define a reduced Cartier module. Relations of this form were called by Norman [N]

“displayed structural equations” of a reduced Cartier module. This is the origin of

Zink’s use of the term display.

Remark 1.9. — Let S
u
։ R be a surjection whose kernel is a nilideal. Let P be a

display over R. Then there is a display P ′ over S and an isomorphism u∗(P ′)
∼−→ P.

This is proven using the fact that finitely generated projective W (R)-modules can

be lifted to finitely generated projective W (S)-modules and using normal decompo-

sitions. Nakayama’s lemma then shows that lifting modules are determined up to

isomorphism (non-unique!).

If P/R is a nilpotent display and P ′ is a lifting to S, then P ′ is nilpotent too.

This is clear as Ker(S → R) is a nilideal.

We ask about the ambiguity in the lifting P ′ of P. If P ′ = (P ′, Q′, F ′, F ′1),

J = Ker(S
u
։ R) and α : P ′ → W (J) ⊗W (S) P

′, we define a display P ′
α over S

lifting P by P ′
α = (P ′, Q′, F ′α, F

′
1α), where F ′α(x) = F ′x − α(F ′x), for x ∈ P ′,

F ′1α(y) = F ′1y − α(F ′1y), for y ∈ Q′. Then P ′
α is a display and Zink shows any lifting

of P is isomorphic to a P ′
α.

Remark 1.10. — Assume p · 1R = 0. Let P be a display over R, P(p) be the display

over R given by (Frob)∗P. Then V ♯ commutes with F and F1 and hence defines a

morphism of display FP : P → P(p). Similarly F ♯ defines a morphism of displays

VP : P(p) → P. Of course both composites are multiplications by p.

If R→ R′ is a ring homomorphism, there is an obvious notion of a descent datum

for P ′ a R′-display and, if P is a R-display, PR′ has a canonical descent datum,

can.
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Zink proves:

Proposition 1.11. — If R → R′ is faithfully flat and p is nilpotent in R, then

P 7→ (PR′ , can) is an equivalence of categories between Displays/R and the category

of R′-displays equipped with descent data. The same is true for nilpotent displays.

2. THE CRYSTALS ASSOCIATED TO DISPLAYS

We refer to [Ber] for a detailed discussion of crystals, crystalline cohomology,...

and recall the bare minimum here. An ideal J ⊂ A has divided powers if we are

given maps γn : J → J , n ≥ 1, satisfying axioms imposed by thinking of γn(x)

as xn

n! . The ideal (p) ⊂ Z(p) has unique divided powers since pn

n! ∈ (p). It follows

that for any ring A, p · A has divided powers. If J ⊂ A is an ideal with divided

powers we require that its divided powers agree with those on J ∩ pA. This is called

the compatibility condition. If R is a Z(p)-algebra, then IR ⊂ W (R) has canonical

divided powers which are compatible with those on p ·W (R). These are determined

by γn
(
v(x)

)
= pn−1

n! v(x
n), [Gr2]. The ideals vm(W (R)) are sub-divided power ideals.

We refer to [Ber] for the definition of nilpotent divided powers and to [M], [Z3] for a

weaker notion.

We continue to assume p is nilpotent in R. If A is an R-algebra, a divided power

thickening of A is a surjection A′
π
։ A such that p is nilpotent in A′ and Ker(π) is

equipped with divided powers (satisfying the compatibility condition). A morphism

of divided power thickenings is a commutative diagramm

(∗) A′
π

//

ψ

��

A

φ

��

B′
eπ

// B

such that Ker(π), Ker(π̃) have divided powers, ψ(γn(x)) = γn(ψ(x)), n ≥ 1 for

x ∈ Ker π.

A crystal in modules M on R is the giving for every divided power thickening A′
π
։

A of a A′-module, M
(A′ π
−→A)

, and for every morphism of divided power thickenings

of an isomorphism

T(ψ,φ) : B′ ⊗
A′

(
M

(A′ π
−→A)

) ∼−→M
(B′ eπ
−→B)

,

these isomorphisms being required to satisfy the obvious transitivity condition.

Similarly we define a Witt-crystal on R as the giving for any divided power thick-

ening of an R-algebra
(
A′

π−→ A
)

of a W (A′)-module K
(A′ π
−→A)

together with, for
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