
Séminaire BOURBAKI Juin 2006

58e année, 2005-2006, no 965, p. 365 à 384

THE WAVE MAP PROBLEM.

SMALL DATA CRITICAL REGULARITY

[after T. Tao]

by Igor RODNIANSKI

1. INTRODUCTION

The purpose of this paper is to describe the wave map problem

✷φ = −φ (∂αφ · ∂αφ) ,(1)

φ|t=0 = φ0, ∂tφ|t=0 = φ1

where φ is a map φ : Rn+1 → Sm−1 ⊂ Rm, and its analogs for other target manifolds,

with a specific focus on the small data critical regularity results of T. Tao, contained

in the following

Theorem 1 ([30], [31]). — Let n ≥ 2 and s > n
2 . The solution of the Cauchy problem

(1) with initial data (φ0, φ1) ∈ (Sm−1, TSm−1) in (Ḣs, Ḣs−1) can be extended uniquely

to a global solution (φ(t), ∂tφ(t)) ∈ (Ḣs, Ḣs−1) on Rn+1 provided that the initial data

(φ0, φ1) has a sufficiently small (Ḣ
n
2 , Ḣ

n
2−1) norm:

‖φ0‖Ḣ n
2 (Rn)

+ ‖φ1‖Ḣ n
2

−1(Rn)
< ǫ.

These results imply that in dimensions n ≥ 3, despite the fact that the wave map

problem is supercritical relative to a conserved energy and there exist solutions

blowing up in finite time, its classical solutions with Sm−1 target can be extended

globally in time as long as the initial data has a small scale-invariant Ḣ
n
2 norm(1).

In the critical dimension n = 2 the result is particularly exciting as it implies that a

solution exists globally as long as it has a small energy.

(1)Here and in what follows we will denote the initial data by φ[0] = (φ0, φ1) and will say that

φ[0] ∈ Hs meaning (φ0, φ1) ∈ Hs ×Hs−1.
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The problem (1) arises as an Euler-Lagrange equation corresponding (formally) to

the critical points of the Lagrangian density:

(2) L [φ] =
1

2
(∂αφ · ∂βφ) mαβ ,

where mαβ is the Minkowski metric on Rn+1. The density L [φ] gives rise to the

Minkowski analog of the harmonic map problem on Rn, in which the energy density

is given by 1
2∇φ · ∇φ and the critical points, harmonic maps φ : Rn → Sm−1, satisfy

the equation

∆φ = −φ(∇φ · ∇φ).

The equation (1) belongs to the more general class of wave map problems, in which

φ is a map from an (n+ 1)-dimensional Lorentzian manifold (M , g) to a Riemannian

manifold (N , h). The map φ is a solution of the Euler-Lagrange equations:

(3) Dα∂αφ = 0,

corresponding to the Lagrangian density:

(4) L [φ] =
1

2
hij (∂αφ

i∂βφ
j) gαβ .

Here {φi} denote local coordinates on N . D is the pull-back of the Levi-Civita

connection on TN to the bundle φ∗(TN ). In terms of the local coordinates {φi}
this pull-back connection acting on sections of φ∗(TN ) reads:

Dα = ∇α + Γ
k

αj , Γ
k

αj = Γkij(φ)∂αφ
i ,(5)

where Γkij is the Christoffel symbol in the coordinates {φi} and ∇ is a covariant

derivative on TM . The wave-map equation (3) has the form:

(6) ✷gφ
k = −Γkij(φ) gαβ(∂αφ

i∂βφ
j).

In particular in the case of a wave map problem from Minkowski space (Rn+1,m) the

map φ verifies the equation

(7) ✷φ = −Γ(φ)(∂αφ, ∂
αφ).

The wave map problem appears naturally in solid-state physics, theory of topological

solitons, Quantum Field Theory and General Relativity:

Topological solitons. — One of the simplest non-trivial models with topological

soliton solutions is the (2 + 1) dimensional Lorentz invariant O(3) classical σ-model

which is nothing else but a (2 + 1)-dimensional wave map problem with S2 target. It

arises in the study of a continuum limit of an isotropic anti-ferromagnet, [8]. Topo-

logical solitons in this model are the static solutions (harmonic maps from R2 → S2

of the equation

✷φ = −φ(∂αφ · ∂αφ)
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which minimize the energy (conserved under evolution)

E[φ] =

∫

R2

(
|∂tφ|2 + |∇xφ|2

)
dx

in a given homotopy class. Such maps satisfy the Bogomol’nyi equation

∂iφ = ±ǫijφ× ∂jφ

and are thought to represent meta-stable particles, [1]. Here ǫij is an anti-symmetric

tensor in two dimensions. The important feature of this model, common to all

(2 + 1)-dimensional wave map problems, is its criticality. Both the equation and the

conserved energy E[φ] are invariant under scaling transformations φ(t, x) → φ(λt, λx).

The problem displays a fascinating interplay between the infinite dimensional wave

map dynamics defined by (1) and a finite dimensional dynamics generated by re-

stricting the full dynamics to the moduli space of static solutions (e.g. self-shrinking

(λ→ 0) of harmonic maps), see e.g. [20], ultimately leading to the existence of large

data solutions of (1) blowing up in finite time, [23].

General Relativity. — The wave map problem on a curved (2 + 1)-dimensional

background with an H2 target arises in the U(1) symmetry reduction of the Einstein

vacuum equations. In this case one starts with a (M,g) Lorentzian (3+1)-dimensional

manifold with Ricci curvature

Rαβ = 0.

Under the assumption that (M,g) is invariant under the group action of U(1) which

orbits are space-like the metric g can be decomposed

g = e−2γg + e2γ(θ)2

where g is a Lorentzian metric on a (2 + 1)-dimensional manifold N = (Σ × R)

and θ = dx3 + Aadx
a with a = 0, 1, 2 local coordinates on N and x3 a coordinate

along the orbit. The equations Ra3 = 0 (and the assumption of triviality of the first

cohomology class of Σ) imply that

dA =
1

2
e−4γ ⋆ dω,

where ∗ is the Hodge dual relative to the metric g and a scalar function ω is called a

twist potential. The equation R33 = 0 implies that

✷gγ +
1

2
e−4γgab∂aω ∂bω = 0,

✷gω − 4gab∂aω ∂bγ = 0

which can be recognized as a wave map equation from (Σ× R, g) into the hyperbolic

space H2 with the metric

2(dγ)2 +
1

2
e−4γ(dω)2.
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Note that the wave map evolves on a dynamic background with the metric g, which

itself depends on the wave map. This coupling is determined by satisfying the re-

maining equations Rab = 0. The only result available in this fully nonlinear context

is a small data global stability in the expanding direction statement for solutions with

Σ a compact surface with genus greater than one, metric g = −dt2 + t2σ with σ a

metric of scalar curvature −1 on Σ and the wave map φ = 0, see [6].

Acknowledgments. — The author would like to thank Terry Tao for valuable

comments on this paper.

2. SUMMARY OF QUESTIONS AND RESULTS FOR THE WAVE

MAP PROBLEM FROM MINKOWSKI SPACE

Traditionally(2), as the wave map equation is a hyperbolic evolution problem, one

is interested in the questions of local and global in time existence and uniqueness

of solutions, existence of solutions blowing up in finite time and stability of static

or other “preferred”(3) solutions. The wave map equation from Minkowski space is

invariant under the scaling transformation φ(t, x) → φ(λt, λx), which also preserves

the Ḣ
n
2 Sobolev norm. On this basis and in view of a geometric nature of the problem,

our experience suggests that we could expect(4) that:

Local in time solutions exist and unique for any initial data φ[0] ∈ Hs with s > n/2.

Solutions with data with a small Ḣ
n
2 -norm can be extended globally in time.

Large data classical solutions can be extended globally in time for the (2 + 1)-

dimensional (critical) wave map problem, where the scale invariant space Ḣ1 coincides

with a conserved energy space, at least in the case of a target manifold of negative

curvature, in analogy with the harmonic map heat flow.

Large data classical solutions can be extended globally in time for the (1 + 1)-

dimensional wave map problem, where the scale invariant space Ḣ
1
2 is larger

(subcritical) than the energy space.

(2)The connection of the wave problem to QFT and GR may present an additional set of questions.
(3)An example of such a solution is φ = γ(u) where γ is a geodesic on (N , h) and u verifies the wave

equation ✷u = 0.
(4)Just on the basis of presented here “evidence” perhaps a more appropriate term here would be

“hope” as in some other problems these expectations have not been yet fulfilled or simply turned out

to be wrong. For the wave map problem these expectations are more grounded due to the referred

to above geometric origin of the problem, which makes available various cancellation properties (e.g.

the expression ∂αφ ·∂αφ is an example of a null form eliminating parallel interactions of free waves).
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Below we briefly (and incompletely, sometimes referring to just the final result) sum-

marize known results (a good survey of the wave map problem is given in [34]):

Existence and uniqueness of local in time solutions in Hs with s > n/2 is in [13], [15]

and [11] in dimension n = 1.

Small data global existence in Ḣ
n
2 × Ḣ

n
2 in dimensions n ≥ 2 is shown in [30], [31].

Extensions to other targets are in [14], [25], [21], [16], [17], [35].

Large data global existence for the (1+1)-dimensional wave map is established in [9],

[19].

Existence of large data solutions blowing up in finite time in dimensions n ≥ 3 is

shown in [24], [4].

Stability of a trivial constant wave map and geodesic wave maps is in [27] and stability

of certain (2 + 1)-dimensional spherically symmetric solutions is in [18].

For the critical (2 + 1)-dimensional wave map problem existence of solutions blowing

up in finite time was proved in [23] for the S2 target. The large data global existence

result is conjectured for the H2 target.

We should also mention that good results have been obtained for the large data critical

(2+1)-dimensional wave map problem for solutions with additional spherical or equi-

variant symmetry assumptions. It was shown in [7] (for geodesically convex targets),

[29] that large data global spherically symmetric solutions can be extended globally

and uniquely in time.

The k-equivariant (co-rotational) solutions of the wave map problem are considered

in the case when a target manifold is a surface of revolution. The results in [26] and

[28] imply that a solution blows up in finite time only if the energy concentrates (in

particular small energy implies regularity), blow-up can not occur at a self-similar

rate and at the blow-up a harmonic map can be “bubbled off”. We note that in the

case of the S2 target the equation for a k-equivariant wave map takes the form

∂2
t u− (∂2

r +
1

r
∂r)u+ k2 sin(2u)

2r2
= 0

for a single scalar function u satisfying the boundary conditions u(0) = 0 and

u(∞) = π.
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