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THE MANY FACES OF THE SUBSPACE THEOREM
[after Adamczewski, Bugeaud, Corvaja, Zannier. . . ]

by Yuri F. BILU*

And we discovered subspace. It gave us our
galaxy and it gave us the universe. And we saw
other advanced life. And we subdued it or we
crushed it. . .With subspace, our empire would
surely know no boundaries.

(From The Great War computer game)

1. INTRODUCTION

This is not a typical Bourbaki talk. A generic exposé on this seminar is, normally, a
report on a recent seminal achievement, usually involving new technique. The principal
character of this talk is the Subspace Theorem of Wolfgang Schmidt, known for almost
forty years. All results I am going to talk about rely on this celebrated theorem (more
precisely, on the generalization due to Hans Peter Schlickewei). Moreover, in all cases
it is by far the most significant ingredient of the proof.

Of course, the last remark is not meant to belittle the work of the authors of the
results I am going to speak about. Adapting the Subspace Theorem to a concrete
problem is often a formidable task, requiring great imagination and ingenuity.

During the last decade the Subspace Theorem found several quite unexpected appli-
cations, mainly in the Diophantine Analysis and in the Transcendence Theory. Among
the great variety of spectacular results, I have chosen several which are technically
simpler and which allow one to appreciate how miraculously does the Subspace Theo-
rem emerge in numerous situations, implying beautiful solutions to difficult problems
hardly anybody hoped to solve so easily.

The three main topics discussed in this article are:

– the work of Adamczewski and Bugeaud on complexity of algebraic numbers;
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– the work of Corvaja and Zannier on Diophantine equations with power sums;
– the work of Corvaja and Zannier on integral points on curves and surfaces, and

the subsequent development due to Levin and Autissier.

In particular, we give a complete proof of the beautiful theorem of Levin and
Autissier (see Theorem 5.8): an affine surface with 4 (or more) properly intersecting
ample divisors at infinity cannot have a Zariski dense set of integral points.

Originally, Schmidt proved his theorem for the needs of two important sub-
jects: norm form equations and exponential Diophantine equations (including the
polynomial-exponential equations and linear recurrence sequences). These “tradi-
tional” applications of the Subspace Theorem form a vast subject, interesting on
its own; we do not discuss it here (except for a few motivating remarks in Sec-
tion 4). Neither do we discuss the quantitative aspect of the Subspace Theorem.
For this, the reader should consult the fundamental work of Evertse and Schlickewei
(see [33, 34, 55, 56, 57] and the references therein).

Some of the results stated here admit far-going generalizations, but I do not always
mention them: the purpose of this talk is to exhibit ideas rather than to survey the
best known results.

In Section 2 we introduce the Subspace Theorem. Sections 3, 4 and 5 are totally
independent and can be read in any order.

2. THE SUBSPACE THEOREM

In this section we give a statement of the Subspace Theorem. Before formulating it
in full generality, we consider several particular cases, to make the general case more
motivated.

2.1. The Theorem of Roth

In 1955, K. F. Roth [51] proved that algebraic numbers cannot be “well approxi-
mated” by rationals.

Theorem 2.1 (Roth). — Let α be an irrational algebraic number. Then for any
ε > 0 the inequality ∣∣∣α− y

x

∣∣∣ < 1

|x|2+ε

has only finitely many solutions in non-zero x, y ∈ Z.

This result is, in a sense, best possible, because, by the Dirichlet approximation
theorem, the inequality |α− y/x| ≤ |x|−2 has infinitely many solutions.
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The theorem of Roth has a glorious history. Already Liouville showed in 1844 the
inequality |α− y/x| ≥ c(α)|x|−n, where n is the degree of the algebraic number α,
and used this to give first examples of transcendental numbers. However, Liouville’s
theorem was too weak for serious applications in the Diophantine Analysis. In 1909
A. Thue [64] made a breakthrough, proving that |α− y/x| ≤ |x|−n/2−1−ε has finitely
many solutions. A series of refinements (the most notable being due to Siegel [62])
followed, and Roth made the final (though very important and difficult) step.

Kurt Mahler, who was a long proponent of p-adic Diophantine approximations, sug-
gested to his student D. Ridout [50] to extend Roth’s theorem to the non-archimedean
domain. To state Ridout’s result, we need to introduce some notation. For every prime
number p, including the “infinite prime” p =∞, we let | · |p be the usual p-adic norm
on Q (so that |p|p = p−1 if p <∞ and |2006|∞ = 2006), somehow extended to the
algebraic closure Q̄. For a rational number ξ = y/x with gcd(x, y) = 1 we define its
height by

(1) H(ξ) = max{|x|, |y|}.

One immediately verifies that

(2) H(ξ) =
∏
p

max {1, |ξ|p} =

(∏
p

min {1, |ξ|p}

)−1

,

where the products extend to all prime numbers, including the infinite prime.
Now let S be a finite set of primes, including p =∞, and for every p ∈ S we fix an

algebraic number αp. Ridout proved that for any ε > 0 the inequality∏
p∈S

min
¶

1, |αp − ξ|p
©
<

1

H(ξ)2+ε

has finitely many solutions in ξ ∈ Q.
While the theorem of Roth becomes interesting only when the degree of α is at

least 3, the theorem of Ridout is quite non-trivial even when the “targets” αp are
rational. Moreover, one can also allow “infinite” targets, with the standard convention
∞− ξ = ξ−1. The following particular case of Ridout’s theorem is especially useful:
given an algebraic number α, a set S of prime numbers, and ε > 0, the inequality

|α− ξ| < H(ξ)−1−ε

has finitely many solutions in S-integers(1) ξ. To prove this, consider the theorem of
Ridout with α∞ = α and with αp =∞ for p 6=∞, and apply (2).

(1) A rational number is called S-integer if its denominator is divisible only by the prime numbers
from S.
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One consequence of this result is that the decimal expansion of an algebraic number
cannot have “too long” blocks of zeros. More precisely, let 0.a1a2 . . . be the decimal
expansion of an algebraic number, and for every n define `(n) as the minimal ` ≥ 0

such that an+` 6= 0; then `(n) = o(n) as n→∞. To show this, apply the above-stated
particular case of the theorem of Ridout with S = {2, 5,∞}. More generally, the
decimal expansion of an algebraic number cannot have “too long” periodic blocks.

S. Lang extended the theorem of Roth-Ridout to approximation of algebraic num-
bers by the elements of a given number field. We invite the reader to consult Chapter 7
of his book [41] or Part D of the more recent volume [40] for the statement and the
proof of Lang’s theorem.

2.2. The Statement of the Subspace Theorem

Now we have enough motivation to state the Subspace Theorem. We begin with
the original theorem of Schmidt [58] (see also [59] for a very detailed proof).

Theorem 2.2 (W. M. Schmidt). — Let L1, . . . , Lm be linearly independent linear
forms inm variables with (real) algebraic coefficients. Then for any ε > 0 the solutions
x = (x1, . . . , xm) ∈ Zm of the inequality

|L1(x) · · ·Lm(x)| ≤ ‖x‖−ε

are contained in finitely many proper linear subspaces of Qm. (Here
‖x‖ = maxi{|xi|}.)

Putting m = 2, L1(x, y) = xα− y and L2(x, y) = x, we recover the theorem of
Roth.

The theorem of Schmidt is not sufficient for many applications. One needs a non-
archimedean generalization of it, analogous to Ridout’s generalization of Roth’s the-
orem. This result was obtained by Schlickewei [52, 53]. As in the previous section,
let S be a finite set of prime numbers, including p =∞, and pick an extension of
every p-adic valuation to Q̄.

Theorem 2.3 (H. P. Schlickewei). — For every p ∈ S let L1,p, . . . , Lm,p be linearly
independent linear forms inm variables with algebraic coefficients. Then for any ε > 0

the solutions x ∈ Zm of the inequality∏
p∈S

m∏
i=1

|Li,p(x)|p ≤ ‖x‖
−ε

are contained in finitely many proper linear subspaces of Qm.
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