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ORDINARY DIFFERENTIAL EQUATIONS
WITH ROUGH COEFFICIENTS AND

THE RENORMALIZATION THEOREM OF AMBROSIO
[after Ambrosio, DiPerna, Lions]

by Camillo DE LELLIS

INTRODUCTION

Consider the Cauchy problem for transport equations on R+ × Rn:

(1)


∂tu(t, x) + b(t, x) · ∇xu(t, x) = 0

u(0, x) = u(x) .

Here b : R+ × Rn → Rn is a given smooth vector field, u a given smooth initial
condition and u the unknown function. Smooth solutions of (1) are constant along
curves φ : [a, b] → Rn solving the system of ordinary differential equations φ̇(t) =

b(t, φ(t)). Indeed, differentiating g(t) = u(t, φ(t)) we find

dg

dt
= ∂tu(t, φ(t)) + φ̇(t) · ∇xu(t, φ(t)) = ∂tu(t, φ(t)) + b(t, φ(t)) · ∇xu(t, φ(t)) = 0 .

Thus, if Φ : R+ × Rn → Rn is the one–parameter family of diffeomorphisms solving

(2)


∂tΦ(x, t) = b(t,Φ(x, t))

Φ(0, x) = x

and Φ−1(t, ·) denotes the inverse of the diffeomorphism Φ(t, ·), then the unique solu-
tion u of (1) is given through the formula u(t, x) = u(Φ−1(t, x)). This is the classical
method of characteristics for transport equations. Our discussion justifies the name
transport equation: the quantity u is simply “transported” along the trajectories of
the ODE (2). It is therefore not surprising that these equations appear in the math-
ematical description of many phenomena in classical and statistical physics.
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When b is Lipschitz, existence and uniqueness of solutions to (2) are given by the
classical Cauchy–Lipschitz Theorem, but for less regular b this elegant and elementary
picture breaks down. On the other hand, many physical phenomena lead naturally to
consider transport equations where the coefficients b are discontinuous. The literature
related to this kind of problems is huge and I will not try to give an account of it here.
Let me just mention that in many of these problems one deals with coefficients which
typically have jump discontinuities, take for instance the theory of shock waves.

It is therefore desirable to have a theory of solutions for ODEs and transport equa-
tions which allows for non–smooth coefficients. The Sobolev spaces W 1,p (given by
functions u ∈ Lp with distributional derivatives in Lp) are probably the most popular
spaces of irregular functions in partial differential equations. In their groundbreaking
paper [28], motivated by their celebrated work on the Boltzmann equation, DiPerna
and Lions introduced a theory of generalized solutions for transport equations and
ODEs with Sobolev coefficients. Loosely speaking, this is done at the loss of a “point-
wise” point of view into an “almost everywhere” point of view. Though a generic
function u ∈W 1,p(Ω) might be extremely irregular, its singular set, at least in a suit-
able measure theoretic sense, has necessarily codimension higher than 1. In particular,
functions with jump discontinuities do not belong to W 1,p. Indeed, if the discontinu-
ities are along nice regular surfaces, the distributional derivatives are nothing more
than Radon measures.

A commonly used functional–analytic closure of such “jump functions” is the BV
space, i.e. the set of summable functions whose distributional derivatives are Radon
measures. The extention of the DiPerna–Lions theory to BV functions has been for
a while an important open problem. After some attempts by other authors leading
to partial results (see [33], [15], [21]; some of these works were motivated by specific
problems in partial differential equations and mathematical physics), Ambrosio solved
the problem in its full generality in [4]. This note is an attempt to illustrate the most
important ideas of the DiPerna–Lions theory and of Ambrosio’s result. In order to
focus on the main points, I will not consider the most general results proved so far.
Moreover, I will not follow the shortest proofs and often I will consider cases which
later on become corollaries of more general theorems.

In the first section, I discuss the first key idea of [28]: the notion of renormalized
solutions and its link to the uniqueness and stability for (1). In Section 2, I discuss
the hard core of the DiPerna–Lions theory for W 1,p fields: the so called commutator
estimate. In Section 3, following the ideas of Ambrosio, I push gradually the DiPerna–
Lions approach towards the BV case. The proof of Ambrosio’s Theorem is finally
achieved in Section 4 in two different ways, based on observations of Bouchut and
Alberti. Section 5 discusses the third key idea of [28], a sort of converse of the classical
theory of characteristics: appropriate results on transport equations can be used to
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infer interesting conclusions on ODEs. Section 6 surveys further results, conjectures
and open problems in three different directions of research. Section 7 contains the
proof of one technical proposition on BV functions used in Section 3.

1. RENORMALIZED SOLUTIONS

1.1. Distributional solutions

Let us start by rewriting (1) in the following way:

(3)


∂tu+ divx(ub)− udivxb = 0

u(0, x) = u(x) .

Here and in what follows I denote by divxb the divergence (in space) of the vector b.
Clearly any classical solution of (3) is a solution of (1) and viceversa. However, equa-
tion (3) can be understood in the distributional sense under very mild assumptions
on u and b. This is stated more precisely in the following definition.

Definition 1.1. — Let b and u be locally summable functions such that the distri-
butional divergence of b is locally summable. We say that u ∈ L∞loc is a distributional
solution of (3) if the following identity holds for every test function ϕ ∈ C∞c (R×Rn)

(4)
∫ ∞

0

∫
Rn
u [∂tϕ+ b · ∇xϕ+ ϕdivxb] dx dt = −

∫
Rn
u(x)ϕ(0, x) dx .

Of course for classical solutions the identity (4) follows from a simple integration by
parts. The existence of weak solutions under quite general assumptions is an obvious
corollary of the maximum principle for transport equations combined with a standard
approximation argument.

Lemma 1.2 (Maximum Principle). — Let b be smooth and let u be a smooth solution
of (3). Then, for every t we have supx∈Rn u(t, x) ≤ supx∈Rn u(x) and infx∈Rn u(t, x) ≥
infx∈Rn u(x). Hence ‖u(t, ·)‖L∞(Rn) ≤ ‖u‖∞.

Proof. — The lemma is a trivial consequence of the method of characteristics. Indeed,
arguing as in the introduction u(t, x) = u(Φ−1(t, x)), where Φ is the solution of (2).
From this representation formula the inequalities follow trivially.

Theorem 1.3. — Let b ∈ Lp with divxb ∈ L1
loc and let u ∈ L∞. Then there exists a

distributional solution of (3).
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Proof. — Consider a standard family of mollifiers ζε and ηε respectively on Rn and
R × Rn. Let bε = b ∗ ηε and uε = u ∗ ζε be the corresponding regularizations of b
and u. Then ‖uε‖∞ is uniformly bounded. Consider the classical solutions uε of

(5)


∂tuε + bε · ∇xuε = 0

uε(0, ·) = uε .

Note that such solutions exist because we can solve the equation with the method of
characteristics: indeed each bε is Lipschitz and we can apply the classical Cauchy–
Lipschitz theorem to solve (2). By Lemma 1.2 we conclude that ‖uε‖∞ is uniformly
bounded. Hence there exists a subsequence converging weakly∗ to a function u ∈
L∞(R+ × Rn). Let us fix a test function ϕ ∈ C∞c (R × Rn). Since the uε are classical
solutions of (5), the identity (4) is satisfied if we replace u, b and u with uε, bε and
uε. On the other hand, since bε → b, divxbε → divxb and uε → u locally strongly in
L1

loc, we can pass into the limit in such identities to achieve (4) for u, u and b.

1.2. Renormalized solutions

Of course the next relevant questions are whether such distributional solutions are
unique and stable. Under the general assumptions above, the answer is negative, as it
is for instance witnessed by the elegant example of [27]. However, DiPerna and Lions
in [28] proved stability and uniqueness when b ∈W 1,p ∩ L∞ and divxb ∈ L∞.

Theorem 1.4. — Let b ∈ L1(R+,W 1,p(Rn)) ∩ L∞ with bounded divergence. Then
for every u ∈ L∞ there exists a unique distributional solution of (3). Moreover, let bk
and uk be two smooth approximating sequences converging strongly in L1

loc to b and
u such that ‖uk‖∞ is uniformly bounded. Then the solutions uk of the corresponding
transport equations converge strongly in L1

loc to u.

In order to understand their proof, we first go back to classical solutions u of (3),
and we observe that, whenever β : R → R is a C1 function, β(u) solves

(6)

{
∂t[β(u)] + divx[β(u)b]− β(u) divxb = 0

[β(u)] = β(u) .

This can be seen, for instance, using the chain rule for differentiable functions, i.e.
∂tβ(u) + b · ∇xβ(u) = β′(u)[∂tu + b · ∇xu]. Otherwise, one can observe that, since
u must be constant along the trajectories (2), so must be β(u). Motivated by this
observation, we introduce the following terminology.

Definition 1.5. — Let b ∈ L1
loc with divxb ∈ L1

loc. A bounded distributional solution
of (3) is said renormalized if β(u) is a solution of (6) for any β ∈ C1. The field b is
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