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by Yves COLIN de VERDIÈRE

INTRODUCTION

This report is about recent progress on semi-classical localization of eigenfunctions
for quantum systems whose classical limit is hyperbolic (Anosov systems); the main
example is the Laplace operator on a compact Riemannian manifold with strictly
negative curvature whose classical limit is the geodesic flow; the quantizations of
hyperbolic cat maps, called “quantum cat maps”, are other nice examples. All this is
part of the field called “quantum chaos”. The new results are:

– Examples of eigenfunctions for the cat maps with a strong localization (“scar-
ring”) effect due to S. de Bièvre, F. Faure and S. Nonnenmacher [17, 16].

– Uniform distribution of Hecke eigenfunctions in the case of arithmetic Riemann
surfaces by E. Lindenstrauss [26].

– General lower bounds on the entropy of semi-classical measures due to N. Anan-
tharaman [1] and improved by N. Anantharaman–S. Nonnenmacher [3] and
N. Anantharaman–H. Koch–S. Nonnenmacher [2]. This lower bound is sharp
with respect to the cat maps examples.

We will mainly focus on this last result.

1. THE 2 BASIC EXAMPLES

1.1. Cat maps

We start with a matrix A ∈ SL2(Z) which is assumed to be hyperbolic: the eigen-
values λ± of A satisfy 0 < |λ−| < 1 < |λ+|. The action of A onto R2 defines a
symplectic action U of A on the torus R2/Z2 by considering action on points mod Z2.
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Such a map is a simple example of a chaotic map. It has been observed since a long
time that such a map can be quantized: for each integer N , we consider the Hilbert
space H N of dimension N of Schwartz distributions f which are periodic of period one
and of which Fourier coefficients are periodic of period N : if f(x) =

∑
k∈Z ake

2πikx,
we have, for all k ∈ Z , ak+N = ak. Using the metaplectic representation applied to A,
we get a natural unitary action ÛN onto the space H N . We are mainly interested in
the eigenfunctions of ÛN . The semi-classical parameter is ~ = 1/N and the classical
limit corresponds to large values of N . A good reference is [8].

1.2. The Laplace operators

On a smooth compact connected Riemannian manifold (X, g) without boundary,
we consider the Laplace operator ∆ given in local coordinates by

∆ = −|g|−1∂ig
ij |g|∂j

with |g| = det(gij). The Laplace operator ∆ is essentially self-adjoint on L2(X) with
domain the smooth functions and has a compact resolvent. The spectrum is discrete
and denoted by

0 = λ1 < λ2 ≤ · · · ≤ λk ≤ · · ·
with an orthonormal basis of eigenfunctions ϕk satisfying ∆ϕk = λkϕk. It is useful
to introduce an effective Planck constant (the semi-classical small parameter) ~ :=

λ
− 1

2

k . We will rewrite the eigenfunction equation ~2∆ϕ = ϕ. The semi-classical limit
~ → 0 corresponds to the high frequency limit for the periodic solutions u(x, t) =

exp(i
√
λkt)ϕk of the wave equation utt + ∆u = 0. Instead of the wave evolution, we

will use the Schrödinger evolution which is given by

~
i
ut = −~2

2
∆u ,

and introduce the unitary dynamics defined by the 1-parameter group

Û t = exp(−it~∆/2), t ∈ R.

For the basic definitions, one can read [5].

1.3. The geodesic flow

If (X, g) is a Riemannian manifold and v ∈ TxX a tangent vector at the point
x ∈ X, we define, for t ∈ R, Gt(x, v) = (y, w) as follows: if γ(t) is the geodesic
which satisfies γ(0) = x, γ̇(0) = v, we put y := γ(t) and w := γ̇(t). By using the
identification of the tangent bundle with the cotangent bundle induced by the metric
g (which is also the Legendre transform of the Lagrangian 1

2gij(x)vivj), we get a flow
(Gt)? on T ?X which preserves the unit cotangent bundle denoted by Z. We denote
by U t the restriction of (Gt)? to Z. The Liouville measure dL on Z is the Riemannian
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measure normalized as a probability measure. The Liouville measure dL is invariant
by the geodesic flow.

2. CLASSICAL CHAOS

Good textbooks on the classical chaos are [21, 28, 10].

2.1. Classical Hamiltonian systems

We consider a closed phase space Z which is the torus R2/Z2 in the case of the cat
map and the unit cotangent bundle in the case of the Laplace operator. On Z, we have
the Liouville measure dL which is normalized as a probability measure. Moreover, we
have a measure preserving smooth dynamics on Z which is the action of U in the
cat map example and the geodesic flow in the Riemannian case. We will denote this
action by U t where t belongs to Z or to R.

2.2. Ergodicity

Definition 2.1. — The dynamical system (Z,U t, dL) is ergodic if every measurable
set which is invariant by U t is of measure 0 or 1.

As a consequence, we get the celebrated Birkhoff ergodic Theorem:

Theorem 2.2. — If (Z,U t, dL) is ergodic, for every f ∈ L1(Z, dL) and almost every
z ∈ Z:

lim
T→∞

1

T

∫ T

0

f(U tz)dt =

∫
Z

fdL .

The cat map is ergodic and the geodesic flow of every closed Riemannian manifold
with < 0 sectional curvature is ergodic too.

2.3. Mixing

A much stronger property is the mixing property which says that we have a corre-
lation decay:

Definition 2.3. — The dynamical system U t is mixing if for every f, g ∈ L2(Z, dL)

with
∫
Z
fdL = 0, we have

lim
t→∞

∫
Z

f(U t(z))g(z)dL = 0 .

Cat maps as well as geodesic flows on manifolds with < 0 curvature are mixing.
Mixing systems are ergodic.
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2.4. Liapounov exponent

Chaotic systems are often presented as (deterministic) dynamical systems which
are very sensitive to initial conditions.

Definition 2.4. — The global Liapounov exponent Λ+ of the smooth dynamical sys-
tem (Z,U t) is defined as the lower bounds of the Λ’s for which the differential dU t of
the dynamics satisfies

‖dU t(z)‖ = O(eΛt) ,

for t→ +∞, uniformly w.r. to z.

For cat maps given by A, Λ+ = log |λ+|. If X is a Riemannian manifold of sectional
curvature −1, Λ+ = 1.

2.5. K-S entropy

Kolmogorov and Sinaï start from the work of Shannon in information theory in
order to introduce an entropy hKS(µ) for a dynamical system with an invariant prob-
ability measure µ. The definition of the entropy uses partitions of the phase space
and how they are refined by the dynamics:

Definition 2.5. — If P = {Ωj |j = 1, · · · , N} is a finite measurable partition of Z,
we define the entropy h( P) := −

∑
µ(Ωj) logµ(Ωj).

In terms of information theory, it is the average information you get by knowing
in which of the Ωj ’s the point z lies. Let P∨N be the partition whose sets are

Ωj1,j2,··· ,jN = {z ∈ Z so that, for l = 1, · · · , N + 1, U l−1(z) ∈ Ωjl} .

If we define P1 ∨ P2 as the partition whose elements are the intersections of one
element of the partition P1 and one element of the partition P2, we get from the
properties of the log function:

h( P1 ∨ P2) ≤ h( P1) + h( P2) .

Let us define P1 = P∨n and P2 = U−n( P∨m). Using the invariance(1) of µ by U ,
we get h( P2) = h( P∨m). From P∨(n+m)

= P1 ∨ P2, we get the sub-additivity of the
sequence N → h( P∨N ).

We define
hKS( P) := lim

N→∞
h( P∨N )/N ,

and hKS(µ) = sup P hKS( P).

(1) The invariance of µ is used in a crucial way here and, as we will see, it is one of the problem we
have to solve when passing to the quantum case.
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