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APPROXIMATE GROUPS
[according to Hrushovski and Breuillard, Green, Tao]

by Lou van den DRIES

1. INTRODUCTION

Throughout G is an ambient group. Let X,Y ⊆ G, and set

XY := {xy : x ∈ X, y ∈ Y }, X−1 := {x−1 : x ∈ X},

X0 := {1} ⊆ G, X1 := X, X2 := XX, X3 := XXX, and so on.

Let 〈X〉 denote the subgroup of G generated by X. A left coset of X is a translate
gX ⊆ G (even if X is not a subgroup of G). We use the term right coset in the same
way. Call X symmetric if 1 ∈ X and X−1 = X. Throughout, m,n ∈ N = {0, 1, 2, . . .}
and K,L are real numbers ≥ 1. Note that if X is symmetric, then 〈X〉 =

⋃
nX

n.
When we say that Y is covered by K left (respectively, right) cosets of X we mean
that there exists E ⊆ G of cardinality |E| ≤ K such that Y ⊆ EX (respectively,
Y ⊆ XE).

Call X an approximate group (in G) if X is symmetric and X2 can be covered
by finitely many left cosets of X (equivalently, by finitely many right cosets of X).
Of course, this notion is trivial for finite X. Any compact symmetric neighborhood
of the identity in a locally compact group is clearly an approximate group. Call X
a K-approximate group if X is symmetric and X2 can be covered by K left cosets
of X (equivalently, by K right cosets). This notion is of particular interest when X is
finite. It is easy to check that 1-approximate groups in G are subgroups of G.

We think of K as small and fixed, and are interested in the structure of finite
K-approximate groups X when its cardinality |X| is large compared to K. On this we
have the following result due to Breuillard, Green, Tao [2] and much of it conjectured
by H. Helfgott and also by E. Lindenstrauss:
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80 L. van den DRIES

Theorem 1.1. — If X ⊆ G is a finite K-approximate group, then there is a
K6-approximate(1) group Y ⊆ X4, such that:

(i) X is covered by L left cosets of Y , where L depends only on K;
(ii) 〈Y 〉 has a d-nilpotent subgroup of finite index, with d ≤ 3 log2K.

Here a group H is called d-nilpotent (d ∈ N) if H is generated by elements u1, . . . , ud
such that [ui, uj ] ∈ 〈u1, . . . , ui−1〉 whenever 1 ≤ i < j ≤ d, in particular, u1 ∈ Z(H);
note that then H is nilpotent of class ≤ d. We also call u1, . . . , ud a nilpotent base
of H if the above holds.

The proof of Theorem 1.1 uses Hrushovski’s modeling [13] of limits of finite
K-approximate groups by compact neighborhoods of the identity in Lie groups. This
may remind you of Gromov [8] on groups of polynomial growth, and among the
applications of Theorem 1.1 are indeed strengthenings of Gromov’s result. These are
derived in Section 3, which also includes a generalized “Margulis Lemma” conjectured
by Gromov; for more on this, see the paper by Courtois [3] in this volume.

Theorem 1.1 says that finite K-approximate groups are largely controlled by nilpotent
groups. A more detailed version of this theorem in [2] gives even tighter control by
so-called coset nilprogressions, which generalize symmetric arithmetic progressions
in Z. This amounts to a qualitative generalization of earlier “inverse” theorems by
Freiman and Ruzsa in additive combinatorics, the study of set addition in abelian
groups; see Tao and Van Vu [23]. Multiplicative combinatorics is its extension to
arbitrary groups, and we start with some basic facts from this subject in Section 2
after sketching the proof of Theorem 1.1. That theorem, however, is trivial for finite
G (take Y = X), unlike the detailed main result in [2]. But its proof avoids the more
complicated local group setting of [2]. How to bound L in (i) explicitly in terms of K
is not known. Such explicit bounds are known for various natural classes of finite
groups; see Helfgott [9, 10, 11].

Sketch of proof for Theorem 1.1

For fixedK, finiteK-approximate groupsXi ⊆ Gi as |Xi| → ∞ behave roughly like
their (logical) limits X ⊆ G where X is now a pseudofinite K-approximate group and
the model-theoretic structure (G,X) is rich in a certain logical sense. (See Section 4
for the logical notions involved.) The properties of the (pseudo)counting measure
on G, normalized so that X has measure 1, lead by a fundamental result in [13] to a
group morphism π : 〈X〉 → G onto a locally compact group G with good properties
such as ker(π) ⊆ X4.

(1) The K6-bound is not in [2]. The bounds in (i) and (ii) are more important.
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Yamabe’s theorem on approximating locally compact groups by Lie groups permits
changing π to a group morphism ρ : 〈Y 〉 → H onto a connected Lie group H for some
definable symmetric Y ⊆ X4 such that ker(ρ) ⊆ Y and finitely many left cosets of Y
cover X. (See Section 4 on “definability”.) Let H be the smallest definable subgroup
of G containing Y . We use induction on d := dim H to construct definable normal
subgroups Hi of H such that

{1} = H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ H2d+1 = H

and the quotient Hi+1/Hi is pseudofinite for even i, and pseudocyclic and central
in H/Hi for odd i. (On general logical grounds and by a group theoretic lemma this
gives a weak version of Theorem 1.1, with bounds depending only on K instead of
the specific bounds K6 and 3 log2K. The latter require additional steps.) To prepare
for this induction we first use the “no small subgroups” property of Lie groups to
shrink Y , without changing 〈Y 〉 or H, so that the image of Y 2 in H contains no
nontrivial subgroup of H . Next, with N∗ ⊇ N and R∗ in the role of N and R, we
define for g ∈ G its exit norm (or escape norm) |g| = |g|Y ∈ R∗ by

|g| :=

{
0 if gν ∈ Y for all ν ∈ N∗,
1/ν if ν ∈ N∗ is minimal with gν /∈ Y .

Thus 0 ≤ |g| ≤ 1, and |g| < 1 ⇔ g ∈ Y . The Lie group H is controlled near the
identity by its Lie algebra via the exponential map, and this allows [2] to adapt
arguments stemming from Gleason [6] to show that for some C ∈ N and all g, h ∈ Y
we have

|gh| ≤ C · (|g|+ |h|), |ghg−1| ≤ C|h|, |[g, h]| ≤ C · |g| · |h|.

This yields a definable normal subgroup of H, namely

H1 := {h ∈ H : |h| = 0} = {h ∈ H : hν ∈ Y for all ν ∈ N∗}

with H1 ⊆ ker(ρ) ⊆ Y . If d = 0, then H = H1 = Y = 〈Y 〉 and we are done, so assume
d > 0. Replacing H by H/H1 and Y by its image in H/H1 without changing H ,
we arrange that |h| > 0 for all h 6= 1 in H. Since Y is pseudofinite, we have u ∈ Y
with minimal |u| > 0. Then |u| is infinitesimal, and the bound on the exit norm of
commutators [g, h] yields that u lies in the center of H. Let H2 := uZ

∗
be the smallest

definable subgroup of H containing u. Replacing H by H/H2 and Y by its image
in H/H2, we can replace H by the lower dimensional Lie group H /H 2, where H 2

is the closure of the central subgroup ρ(H2 ∩ 〈Y 〉) in H . This decrease in dimension
gives by induction the desired result.
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