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Abstract. — In these notes, we explain some recent progress on analytic continuation
of overconvergent p-adic Hilbert modular forms and applications to classicality as
well as the strong Artin conjecture. We will begin with the classical case of elliptic
modular forms to explain the basic ideas and hint at what new ideas are needed in
the general case. We then move on to the case of Hilbert modular forms where the
prime p is assumed unramified in the relevant totally real field.

Résumé (Prolongement analytisque des formes modulaires surconvergentes de Hilbert)
Dans ces notes, nous expliquons des progrès récents relatifs au prolongement

analytique de formes modulaires surconvergentes p-adiques de Hilbert. Nous donnons
des applications aux problèmes de classicité de telles formes ainsi qu’à la conjecture
d’Artin forte. Nous commençons par le cas usuel des formes modulaires elliptiques
pour dégager les idées simples et souligner les généralisations requises. Nous nous
focalisons ensuite sur le cas des formes de Hilbert lorsque le nombre premier p est
non ramifié dans le corps totalement réel.

The main theorems of this paper will be Theorems 3.4.4, 4.0.1 and 5.1.1 for which
we defer to the rest of the text.

Acknowledgements. — We are grateful for the hospitality of IHÉS during a visit
when part of this article was written. We thank the anonymous referee for a thorough
reading of this article and useful suggestions.

1. The classical case

1.1. — In [5], Buzzard and Taylor proved the modularity of a certain kind of a Galois
representation ρ by first showing that ρ arises from an overconvergent modular form
f , and then proving that f is indeed a classical modular form. In this work (and the
subsequent generalization by Buzzard [4]), the demonstration of the classicality of f
was carried out through analytic continuation of f from its original domain of defini-
tion (which is an admissible open region in the rigid analytic modular curve) to the
entire modular curve. This implies classicality since by the rigid analytic GAGA, any
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global analytic section of a line bundle over the analytification of a smooth projective
variety is, indeed, algebraic.

Earlier, in [6], Coleman had proved a criterion for classicality of p-adic overconver-
gent modular forms in terms of slope, i.e., the p-adic valuation of the eigenvalue of
the Up Hecke operator.

Theorem 1.1.1 (Coleman). — Any overconvergent modular form f of weight k and
slope less than k ´ 1 is classical.

Coleman’s proof involved calculations with the cohomology of modular curves.
We could, however, ask whether this result could be proven by invoking the above
principle of analytic continuation. In other words, given the slope condition, could
we analytically continue f from its domain of definition to the entire modular curve?
In [11], we showed that this is possible and involves the construction of a series whose
convergence is guaranteed by the given slope condition. In this section, we will explain
the proof in [11] by dissecting the method to see what is essential for the application
of the method in more general cases. In doing so, we will introduce an idea of Pilloni
which allow for a less explicit and, hence, more general approach.

1.2. The proof of Coleman’s theorem via analytic continuation [11]

Let p be a prime number, and N ě 4 an integer. In this chapter only, we let Y
denote the completed modular curve of level Γ1pNq X Γ0ppq defined over Qp. Its
noncuspidal locus classifies the data pE,Hq over Qp-schemes, where E is an elliptic
curve with Γ1pNq-level structure, and H a finite flat subgroup scheme of E of order p.
Let ω be the usual sheaf on Y whose sections are invariant differentials on the universal
family of (generalized) elliptic curves on Y . Modular forms of level Γ1pNq X Γ0ppq

and weight k P Z are elements of H0pY, ωkq. We let Y an denote the p-adic rigid
analytification of Y , and continue to denote the analytification of ω by ω. Let YZ
denote the semistable integral model of Y defined using an integral version of the
same moduli problem.

Let Y an,0 denote the modular curve whose noncuspidal locus classifies all pE,H,Dq
such that pE,Hq ‰ pE,Dq and both are classified by Y an. There are two morphisms
π1, π2 : Y an,0 Ñ Y an sending pE,H,Dq to pE,Hq and pE{D, H̄q, respectively, where
H̄ denotes the image of H in E{D.

To define rigid analytic regions inside Y an, we need to recall the notion of degree
of a finite flat group scheme over a finite extension of Qp and some of its properties.

The degree of a finite flat group scheme. — We define the notion of degree and record
some properties that we will use later. This useful notion was defined by Illusie and
others, and has been more recently studied by Fargues in [8]. Let νp denote the p-adic
valuation on Cp (the completion of an algebraic closure of Qp) such that νpppq “ 1.

Definition 1.2.1. — Let OK be the ring of integers in a finite extension K of Qp. If G
is finite flat group scheme over OK , we define degpGq “ `pωGq{eK , where, ωG is the
OK-module of global invariant differentials on G, ` denotes the length of a module,
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and eK is the ramification index of K. In fact, degpGq equals the p-adic valuation of
a generator δG of Fitt0pωGq, the zeroth Fitting ideal of ωG.

We record some lemmas which we will use later.

Lemma 1.2.2 ([8, lemme 4]). — Assume that 0 Ñ G1 Ñ GÑ G2 Ñ 0 is an exact se-
quence of finite flat group schemes over OK . We have degpGq “ degpG1q ` degpG2q.

Lemma 1.2.3 ([8]). — Let λ : AÑ B be an isogeny of p-power degree between abelian
schemes over S “ Specp OKq. Let G be the kernel of λ. Let ωA{S and ωB{S denote the
sheaves of invariant differentials of A and B, respectively. Then

degpGq “ νppdetpλ˚ : ωB{S Ñ ωA{Sqq.

In particular, if A is an abelian scheme over Specp OKq of dimension g, then
degpArpnsq “ ng.

Remark 1.2.4. — The degree of an isogeny between abelian varieties is seldom equal
to the degree of its kernel.

Proposition 1.2.5 ([8, corollaire 3]). — Let G and G1 be two finite flat group schemes
over S “ Specp OKq, and λ : GÑ G1 a morphism of group schemes which is gener-
ically an isomorphism. Then, degpGq ď degpG1q with equality if and only if λ is an
isomorphism.

Proposition 1.2.6 ([15, lemme 2.3.4]). — If G is a truncated Barsotti-Tate group of
level 1 defined over a finite extension of Qp, then degpGq is an integer.

The degree function can be used to parameterize points on the modular curve, and
to cut out rigid analytic subdomains on it.

Definition 1.2.7. — Let Q “ pE,Hq be a point on Y an. If E has good reduction,
we define degpQq “ degpHq. Otherwise, we define degpQq “ 0 or 1, depending on
whether Q has étale or multiplicative reduction. If I is a subinterval of r0, 1s, we
define Y anI to be the admissible open subdomain of Y an consisting of points Q such
that degpQq P I. If a, b are rational numbers, then Y anra, bs is quasi-compact. It is
easy to see that the locus of supersingular reduction is exactly Y anp0, 1q. The ordinary
locus has two connected components, the multiplicative locus Y anr1, 1s, and the étale
locus, Y anr0, 0s. An overconvergent modular form of weight k P Z is a section of ωk

on Y anr1´ ε, 1s for some ε ą 0.

Remark 1.2.8. — In Buzzard’s work [4, § 4], the modular curve is parameterized by
a function v1 instead of deg. Roughly speaking, the value of v1 at a supersingular
point Q is the p-adic valuation of an appropriate parameter of the supersingular
annulus containing Q. There is a simple relationship between deg and v1: we have
v1pE,Hq “ 1´ degpE,Hq.

Given the above lemma, we can now rephrase the classical theory of canonical
subgroups (due to Katz and Lubin) in terms of degrees, as follows:
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Proposition 1.2.9 (Lubin-Katz). — Let Q “ pE,Hq P Y an. Define

SibpQq “ tQ1 “ pE,H 1q P Y an : Q1 ‰ Qu.

– If degpQq ą 1{pp ` 1q, then, for any Q1 P SibpQq, we have degpQ1q “

p1´ degpQqq{p ă 1{pp` 1q.
– If degpQq “ 1{pp` 1q, then, for any Q1 P SibpQq, we have degpQ1q “ 1{pp` 1q.
– If degpQq ă 1{pp` 1q, then, there is a unique pE,H 1q “ Q1 P SibpQq, such that

degpQ1q ą 1{pp ` 1q; H 1 is called the (first) canonical subgroup of E, it varies
analytically with respect to Q, and we have degpQ1q “ 1´p degpQq. For all other
Q2 P SibpQq, we have degpQ2q “ degpQq ă 1{pp` 1q.

We make a definition:

Definition 1.2.10. — If degpE,Hq ă 1
pm´1pp`1q , then, for any 1 ď n ď m, we can

define a cyclic subgroup Cn of Erpn] of order pn, called the n-th canonical subgroup
of E, inductively as follows. By Proposition 1.2.9, E has a first canonical subgroup C1,
and degpE{C1, H̄q “ 1´degpE,C1q “ p degpE,Hq ă 1

pm´2pp`1q . Hence, by induction,
we can construct C 1n, the n-th canonical subgroup of E{C1, for all 1 ď n ď m ´ 1.
For 2 ď n ď m, we define Cn “ pr´1pC 1n´1q, where pr : E Ñ E{C1 is the projection.

The first step of the analytic continuation—the first take. — This step is due to Buz-
zard [4]. Using an iteration of the Up operator, Buzzard extends f from its initial do-
main of definition to progressively larger domains, eventually extending f to Y anp0, 1s.

Proposition 1.2.11 (Buzzard). — Let f be an overconvergent modular form f satisfying
Uppfq “ apf with ap ‰ 0. Then f extends analytically to Y anp0, 1s.

We first recall the definition of the Up operator. Let V and W be admissible opens
of Y an such that π´1

1 p V q Ă π´1
2 pW q inside Y an,0. We define an operator

Up “ U V
W : ωkpW q Ñ ωkp V q,

via the formula

(1.2.1) Upf “
1

p
π1,˚presppr˚π˚2 pfqqq,

where res is restriction from π´1
2 pW q to π´1

1 p V q, π1,˚ is the trace map associated
with the finite flat map π1, and pr˚ : π˚2ω

k Ñ π˚1ω
k is a morphism of sheaves on Y an

which at pE,H,Dq is induced by pr˚ : ΩE{D Ñ ΩE coming from the natural projection
pr : E Ñ E{D.

One can also define a set-theoretic Up correspondence as the map which sends a sub-
set S Ă Y an to another subset UppSq “ π2pπ

´1
1 pSqq. The condition π´1

1 p V q Ă π´1
2 pW q

is equivalent to Upp V q Ă W .
The principle underlying Buzzard’s method is the following. Let W be an admissible

open such that UppW q Ă W . Suppose f is defined over W and Uppfq “ apf with
ap ‰ 0. Suppose further that V Ą W is an admissible open subset of Y an such that
Upp V q Ă W . Then, f extends from W to V , and the extended section (which we
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