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Abstract. — Sobolev spaces Hs
loc(M) on a real manifold M are classical objects of

Analysis. In this paper, we assume that M is real analytic and denote by Msa the
associated subanalytic site, for which the open sets are the open relatively compact
subanalytic subsets and the coverings are, roughly speaking, the finite coverings.
For s ∈ R, s ≤ 0, we construct an object H s of the derived category D+(CMsa )

of sheaves on Msa with the property that if U is open in Msa and has a Lipschitz
boundary, then the object H s(U) := RΓ(U ; H s) is concentrated in degree 0 and
coincides with the classical Sobolev space Hs(U). This construction is based on the
results of S. Guillermou and P. Schapira in this volume.

Moreover, in the special case where the manifold M is of dimension 2, we will
compute explicitly the complex H s(U) and prove that it is always concentrated in
degree 0, but is not necessarily a subspace of the space of distributions on U .

Résumé (Espaces de Sobolev et faisceaux de Sobolev). — Soit M une variété analytique
réelle. Le site sous-analytique Msa est constitué des ouverts sous-analytiques re-
lativement compacts de M , les recouvrements étant finis à extraction près. Pour
s ∈ R, soit Hs

loc(M) l’espace de Sobolev usuel sur M . Pour tout s ∈ R, s ≤ 0 nous
construisons un objet H s de la catégorie dérivée D+(CMsa ) des faisceau sur Msa,
qui vérifie la propriété suivante: pour tout ouvert U ∈Msa à frontière lipschitzienne,
H s(U) := RΓ(U ; H s) est concentré en degré 0 et coïncide avec l’espace de Sobolev
usuel Hs(U). Cette construction utilise les résultats de S. Guillermou et P. Schapira
contenus dans ce volume.

Dans le cas où M est de dimension 2, nous explicitons le complexe H s(U). Nous
démontrons qu’il est toujours concentré en degré 0, mais ne s’identifie pas toujours à
un sous-espace de distributions sur U .
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1. Introduction

Let M be a real analytic manifold. Let us recall that for s ∈ R, and x0 ∈ M one
says that a distribution u ∈ D′(M) belongs to the space Hs

x0
(M) iff there exists a

properly supported pseudodifferential operator P of degree s, elliptic at x0, such that
Pu ∈ L2

loc(M). As usual, we denote by Hs
loc(M) the space of distributions u on M

such that u ∈ Hs
x0

(M) for all x0 ∈M . For U open and relatively compact in M , we
define the space Hs(U) by

Hs(U) = {f ∈ D′(U), ∃g ∈ Hs
loc(M), g|U = f}.

Following [3], we endow the real analytic manifoldM with the subanalytic topology
and denote byMsa the site so-obtained. Recall that the open sets of this Grothendieck
topology are the relatively compact open subanalytic subsets of M and the coverings
are the finite coverings. As usual, one denotes by D+(CMsa

) the derived category of
sheaves of C-vector spaces on Msa consisting of spaces bounded from below.

In this paper, we address the following question:
Let s ∈ R be given. Does there exists an object H s of D+(CMsa

), such that the
following requirement holds true:

(1.1)
If U is open, Lipschitz, and relatively compact, then the complex H s(U)

is concentrate in degree 0 and is equal to Hs(U).

If 1.1 holds true, then we will say that the object H s of D+(CMsa) is a “Sobolev
sheaf”. Clearly, this problem depends on the parameter s ∈ R. It turns out that
the answer to the above question is a straightforward byproduct of a theorem of A.
Parusinski [5] for the values s ∈ ]−1/2, 1/2[. More precisely, for s ∈ ]−1/2, 1/2[, U 7→
Hs(U) is a sheaf on Msa, with cohomology concentrated in degree 0 (see Lemma 5.2
in Section 5).

In this paper, we will construct the Sobolev sheaf H s for any s ≤ 0; this construc-
tion is based on the results of S. Guillermou and P. Schapira in [1]. Moreover, in the
special case where the manifold M is of dimension 2, we will compute explicitly the
complex H s(U) for any bounded subanalytic open subset of M ; it turns out that
in dimension 2 and for s ≤ 0, H s(U) is always concentrated in degree 0, but is not
always a subspace of D′(U). We will address the existence of the Sobolev sheaf H s

for s ≥ 0 in a forthcoming paper.
Let us recall that for any object F of D+(CMsa

), if we denote by Hj(U, F ) the
jth cohomology space of the complex F (U), one has the exact long Mayer Vietoris
sequence, where U, V are two open subanalytic relatively compact subsets of M

(1.2) → Hj(U∪V, F )→ Hj(U, F )⊕Hj(V, F )→ Hj(U∩V, F )→ Hj+1(U∪V, F )→

The construction of a Sobolev sheaf H s is a purely local problem near any point
of M . In fact, all the Sobolev spaces introduced in this article are C∞0 (M) modules.
Hence we may and will assume M = Rn in all the paper.
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The paper is organized as follows:
In Section 2, we recall some basic facts on Sobolev spaces on Rn, and we introduce

the spaces Hs(U), Hs
0 [U ], U ⊂ Rn open, and the spaces Hs

F , F ⊂ Rn closed.
In Section 3, we study the Sobolev spacesHs(U) when U is an open bounded subset

of Rn with Lipschitz boundary. The main result in this section is Proposition 3.6. From
the requirement (1.1) and the exact long Mayer Vietoris sequence (1.2), the validity
of Proposition 3.6 is a necessary condition for the existence of a Sobolev sheaf H s.

Section 4 is devoted to the study of the auxiliary spaces Xt(U) and Y s(U). The
main result in this section is Proposition 4.11 which implies that the sheaf U 7→ Y s(U)

is Γ-acyclic on the linear subanalytic site.
Section 5 is devoted to the construction of the Sobolev sheaf H s in the case s ≤ 0.

In Subsection 5.1, using Proposition 4.11, the construction of the Sobolev sheaf H s

for s ≤ 0 becomes a simple byproduct of the results of S. Guillermou and P. Schapira
in [1]. In Subsection 5.2, we compute explicitly the cohomology of the complex H s(U)

on R2 for s ≤ 0. In particular, we verify that this complex is in degree 0, but H0(U, H s)

is not always a subspace of D′(U).
Finally, in the appendix, we give in Section 6.1 some results about interpolation

spaces, and we recall in Section 6.2 the “classical” definition of Sobolev spaces given
in the book of Lions and Magenes [4], and their relations with our spaces.

In all the paper, we shall use the following notations:
B(x, r) = {y ∈ Rn, |y − x| < r} is the open Euclidean ball with center x and

radius r.
For s ∈ R, we denote by [s] be the integer part of s and {s} = s− [s] ∈ [0, 1[.
We will denote by Hj,s(U) the jème cohomology space of the complex H s(U).

Acknowledgement. — We warmly thank Pierre Schapira for the numerous discussions
we have had about the possibility of sheafying the Sobolev spaces and defining them
as complexes of sheaves, or more precisely as objects of a derived category.

2. Notations and basic results on Sobolev spaces

Let us first recall that for s ∈ R, the Sobolev space Hs(Rn) is the space
of tempered distributions f such that the Fourier transform f̂ is in L2

loc and
(1 + |ξ|2)s/2f̂(ξ) ∈ L2(Rn). It is an Hilbert space with the norm

‖f‖2Hs =

∫
(1 + |ξ|2)s|f̂(ξ)|2dξ.

Let us recall (see [2], Section 7.9) that for s ≥ 0, with k = [s] and r = {s}, one has
f ∈ Hs(Rn)) if and only if ∂αf ∈ L2(Rn) for all α, |α| ≤ k, and (in the case r > 0),
∂αf(x)−∂αf(y)
|x−y|n/2+r ∈ L2(Rn ×Rn) for all α, |α| = k. Moreover, the square of the Hs norm
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is equivalent to

(2.1)
∑
|α|≤k

∫
Rn
|∂αf(x)|2 dx+ 1r>0

∑
|α|=k

∫
Rn×Rn

|∂αf(x)− ∂αf(y)|2

|x− y|n+2r
dxdy.

If F is a closed subset of Rn, we denote by Hs
F the closed subspace of Hs(Rn)

(2.2) Hs
F = {f ∈ Hs(Rn), support(f) ⊂ F}.

If U is an open subset of Rn, we denote by Hs
0 [U ] the closure of C∞0 (U) for the

topology of Hs(Rn). Obviously, Hs
0 [U ] is a closed subspace of Hs

U
.

For U open in Rn, we denote by Hs(U) the subspace of D′(U)

(2.3) Hs(U) = {f ∈ D′(U),∃g ∈ Hs(Rn), g|U = f}.

We put on Hs(U) the quotient topology:

(2.4) ‖f‖Hs(U) = inf(‖g‖Hs(Rn), g|U = f).

Then one has the exact sequence

(2.5) 0→ Hs
Rn\U → Hs(Rn)→ Hs(U)→ 0

which defines an Hilbert structure on Hs(U).

Remark 2.1. — The definition of Hs(U) given by (2.3) is not the “usual” definition of
the Sobolev space on U given in [4]. However, we will see in Section 6.2 that when U is
Lipschitz and bounded, (2.3) coincides with the usual definition for all values of s ∈ R,
except for s = −1/2 − k, k ∈ N. Observe also that with the definition (2.3), it is
obvious that for any s and α, the derivation ∂α maps Hs(U) into Hs−|α|(U). However,
(see Section 6.2, Lemma 6.6) the map f 7→ ∂xf does not map (!) H1/2(]0,∞[) into
H−1/2(]0,∞[) with the usual definition of H−1/2(]0,∞[) given in [4].

Let U be an open subset of Rn, s ∈ R and t = −s. There is a natural duality pairing
between the spaces Hs(U) and Ht

0[U ]. It is defined for f ∈ Hs(U) and ψ ∈ Ht
0[U ] by

the formula

(2.6) <f, ψ> = lim
n→∞

<g, ψn>, g ∈ Hs(Rn), g|U = f

where ψn ∈ C∞0 (U) is a sequence which converges to ψ in Ht(Rn). One has obviously
from the above definitions

(2.7) |<f, ψ>| ≤ ‖f‖Hs(U)‖ψ‖Ht0[U ].

From (2.7), the canonical map j from Ht
0[U ] into the dual space of Hs(U) defined

by j(ψ)(f) = <f, ψ> is continuous, and the map ̃ from Hs(U) into the dual space
of Ht

0[U ] defined by ̃(f)(ψ) = <f, ψ> is continuous.

Lemma 2.2. — The map j is an isomorphism of Ht
0[U ] onto the dual space of Hs(U).

The map ̃ is an isomorphism of Hs(U) onto the dual space of Ht
0[U ].
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