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Abstract. — We prove that the limit of a sequence of generic semi-algebraic sets given
by a finite number of formulas always exists and is a semi-algebraic set that can be
explicitly given as a Boolean expression involving the primitives of the additive forms
of the formulas.
Résumé (Sur la limite des familles de subvarietés algébriques sans volume borné)

On prouve que la limite d’une suite d’ensembles semi-algébriques génériques don-
nés par un nombre fini de formules existe toujours et est un ensemble semi-algébrique,
ensemble qui peut être donné explicitement comme une expression booléenne impli-
quant les primitives des formes additives de formules.

1. Introduction

Bishop [2] proved that the limit set of a sequence of complex purely k-dimensional
algebraic subvarieties whose real volumes are uniformly bounded is again a purely
k-dimensional algebraic subvariety. On the other hand, there are many reasons why
one should be interested in analyzing the limit sets of algebraic subvarieties with
unbounded volume. One reason is the existence of families of algebraic curves of
increasing degree that are integrals of families of polynomials differential equations
on the plane with bounded degree, a badly understood phenomenon related to the
sixteenth Hilbert Problem (see [4], for instance). Another reason is that, despite the
existence of topologically complicated limit sets of curves with unbounded volume
(see [6], for instance), much can be said about the limit sets of algebraic subvarieties
which lie in a family of subvarieties with finite complexity (see [5] for a definition of
this concept).
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In this paper we consider the limit sets of one-parameter families of algebraic
subvarieties, indexed by a natural number n, defined by a finite number of equations,
each equation defined by a formula. Informally, a formula is a polynomial expression
in which n appears in exponents only. Associated to each formula there is a height,
which is the maximum number of nested n-th powers that appear in it. Here is the
formal definition:

Definition 1. — Formulas and their heights are defined recursively as follows:
1. Every polynomial F ∈ C[X1, . . . , Xm] is a formula of height zero.
2. If F1 and F2 are formulas, then F1 + F2 and F1F2 are formulas of height

max(h1, h2), where hi is the height of Fi.
3. If F is a formula of height h, then Fn is a formula of height h+ 1.

A formula of height zero is also called a primitive formula; it is simply a complex
polynomial.

At times we shall need to evaluate a formula F at a point z ∈ Cm and for a
particular n. In this case, we shall write F (z;n).

The height is a measure of the complexity of the formula: it measures how the
degree increases with n. A formula of height h has degree proportional to nh. More
precisely, the degree of a formula of height h is Θ(nh), using Landau’s asymptotic
notation as modified by Knuth [3].

An example of a formula of height 3 is

xy2(((x2 − y + 1)n − 1)n + x)n + (xy)n + (yn − 1)2 + 1.

Note that the degree is 2n3 + 3 = Θ(n3).
The same polynomial family may be given by different formulas. For instance,

(xn + y)2 = (xn)2 + 2xny + y2.

For our purposes, a convenient way to handle this issue is to express formulas in
additive form. A formula is in additive form when it can be expressed as

Q1A
n
1 +Q2A

n
2 + · · ·+QlA

n
l − P ,

where Q1, . . . , Ql, and P are primitive formulas and A1, . . . , Al are arbitrary subfor-
mulas (necessarily of smaller height than the original formula). As we shall see later,
additive forms help us to use induction on the height when working with formulas.

Lemma 1. — Every formula can be written in additive form.

Proof. — The proof is by induction on the number of operations required to obtain
the formula according to Definition 1. If F is a primitive formula, then we can take
l = 0 and P = −F . If F = An, then F is already in additive form because we can
take l = 1, Q1 = 1, A1 = A, and P = 0. If F = A + B, then by induction A and B
can be expressed in additive form, whose combination gives an additive form for F .
If F = AB, then again by induction A and B can be expressed in additive form. By
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performing the multiplication AB on their additive forms, we get an additive form
for F .

As an example of the procedure described in the proof above, (xn + y)2 can be
written in additive form as (x2)n + (2y)xn + y2. Note that the expression (xn)2 +

2xny + y2 given earlier for (xn + y)2 is not in additive form.

Definition 2. — The limit (as n→∞) of a sequence (Ωn) of subsets of Cm is the set
lim Ωn of points that are limits of sequences of points lying in a subsequence of (Ωn).
More precisely,

lim Ωn = { z ∈ Cm : ∃(zn), zn → z,∃(kn), kn →∞, zn ∈ Ωkn for sufficiently large n } .

Thus, according to this definition, the family of real curves x2n +y2n = 1 converges
to the border of the unit square given by x2 ≤ 1, y2 ≤ 1. Actually, the definition of
limit applies to the curves xn + yn = 1 (note that we now allow both even and odd
exponents). These curves converge to the union of the border of the unit square with
the two rays given by x = −y, x2 ≥ 1 (the curves actually alternate between these two
limit sets, but our definition of limit covers this). Considered as a family of complex
curves, xn + yn = 1 has as limit set the subset of C2 given by ∂([|x| < 1] ∩ [|y| <
1]) ∪ [|x| = |y| > 1], as it is easy to verify.

We shall consider two situations: limit sets in Rm of families of algebraic subvarieties
given by a finite number of formulas and limit sets in Cm of families of complex
algebraic subvarieties.

In the real case it turns out that it is easier to describe the limits of semi-algebraic
subsets, instead of algebraic subsets. Semi-algebraic subsets will also play a role in the
complex case. An algebraic subvariety is the set of points that satisfy a polynomial
equation f(z) = 0. For simplicity, we shall write this set as [f = 0]. A semi-algebraic
set in Rm is one given by a Boolean expression on subsets of the form [f > 0] or
[f ≥ 0]. We shall also deal with basic closed semi-algebraic subsets, which are the
solutions of a system of polynomial inequalities: [f1 ≥ 0, . . . , fk ≥ 0], and with basic
open semi-algebraic subsets, which are given by strict inequalities: [f1 > 0, . . . , fk > 0].

One main difficulty in the theory of semi-algebraic sets is that the closure of a
basic open semi-algebraic set is not necessarily the corresponding basic closed semi-
algebraic set obtained by relaxing the strict inequalities. That is, the closure of [f1 >

0, . . . , fk > 0] is not always [f1 ≥ 0, . . . , fk ≥ 0]. Nor is the interior of a closed semi-
algebraic set equal to the corresponding basic open semi-algebraic set obtained by
restricting the inequalities. That is, the interior of [f1 ≥ 0, . . . , fk ≥ 0] is not always
[f1 > 0, . . . , fk > 0]. However, these statements are true generically, in two senses: (i)
they are true if we perturb the polynomials slightly, and (ii) relaxing or restricting
the inequalities only adds or removes lower dimensional components. We say that
a basic closed semi-algebraic set is generic when it coincides with the closure of the
corresponding basic open semi-algebraic set obtained by restricting the inequalities. In
other words, a basic closed semi-algebraic set given by [f1 ≥ 0, . . . , fk ≥ 0] is generic
when [f1 ≥ 0, . . . , fk ≥ 0] = closure[f1 > 0, . . . , fk > 0]. A generic algebraic set is,
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by definition, the boundary of a generic semi-algebraic subset. For a full discussion of
real algebraic and semi-algebraic sets, see the book by Benedetti and Risler [1].

Our main result is the following:

Theorem 1. — The limit of a sequence of generic semi-algebraic sets given by a finite
number of formulas always exists and is a semi-algebraic set that can be explicitly
given as a Boolean expression involving the primitives of the additive forms of the
formulas.

The corresponding algebraic version is also valid:

Theorem 2. — The limit of a sequence of generic algebraic sets given by a finite num-
ber of formulas always exists and is an algebraic set that can be explicitly given as a
Boolean expression involving the primitives of the additive forms of the formulas.

In the complex case, the limit set of a family of algebraic sets given by a finite
number of formulas has also an underlying semi-algebraic structure in the sense that
it projects, by means of a rational map, onto a proper real semi-algebraic subset
defined by expressions involving the absolute values of the primitives of the formulas.
More precisely, we have the following result:

Theorem 3. — The limit of a sequence of generic algebraic subsets given by a finite
number of formulas with complex coefficients always exists; it is a subset with a com-
plex structure obtained by means of a rational pull-back on semi-algebraic subsets
defined explicitly in terms of Boolean expressions involving the absolute values of the
primitives of the formulas.

As an example of the situation in the complex case, we consider the following
generalization of the xn +yn = 1 example given earlier. Let A1, A2, and P be complex
polynomials. Then

lim[An
1 +An

2 = P ] = ∂([|A1| < 1] ∩ [|A2| < 1] ∩ [P 6= 0]) ∪ [|A1| = |A2| > 1]).

This limit can be also understood as the pull-back by the polynomial map

(A1, A2) : C2 → C2

of the Reinhardt preimage of the semi-algebraic subset of R2 given by the second
member of the equation above, where the axes of R2 are taken as |A1| and |A2|.

2. The real case

We start with the simplest cases and continue to more complicated cases until we
reach general formulas in additive form. To simplify the exposition, we assume that
all semi-algebraic sets are generic and we consider only formulas in which all n-th
powers are even.

The simplest non-trivial formula of height 1 is A2n − P , where A and P are real
polynomials. We want to describe the limit of the algebraic subsets [A2n = P ]. As
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mentioned before, it is simpler to describe the limit of the semi-algebraic sets Ωn =

[A2n ≤ P ]. The strategy in the following lemma and in all subsequent lemmas in this
section will be to give a candidate Ω for Ω∞ = lim Ωn and to show that Ω∞ ⊆ Ω and
Ω ⊆ Ω∞, thus establishing that Ω∞ = Ω.

All lemmas in this section say that the limit of a formula can be expressed as a
Boolean combination of formulas of smaller height. Thus, they will provide a basis for
proving Theorem 1 by induction on the height of the formula.

Lemma 2. — Let A and P be polynomials. Then lim[A2n ≤ P ] = [A2 ≤ 1, P ≥ 0].

Proof. — Let Ωn = [A2n ≤ P ], Ω∞ = lim Ωn, and Ω = [A2 ≤ 1, P ≥ 0]. We shall
show that Ω∞ = Ω.

Take z ∈ Ω∞. Then, by definition, there are sequences zn → z and kn → ∞
with zn ∈ Ωkn , that is, A(zn)2kn ≤ P (zn). Since A(zn)2kn ≥ 0, we get P (zn) ≥ 0

and hence P (z) = limP (zn) ≥ 0. Moreover, the sequence (P (zn)) is bounded and so
P (zn) ≤ L for some L > 0. This implies that A(zn)2 ≤ P (zn)1/kn ≤ L1/kn . Therefore,
A(z)2 = limA(zn)2 ≤ limL1/kn = 1. Hence, z ∈ Ω.

Reciprocally, take z ∈ Ω. Since Ω is generic, we have that z = lim zn, with zn ∈
[A2 < 1, P > 0]. From A(zn)2 < 1 we get that A(zn)2k → 0 as k → ∞. Since
P (zn) > 0, there is a kn such that A(zn)2kn < P (zn), that is, zn ∈ Ωkn

. By increasing
kn beyond n if necessary to get kn →∞, we conclude that z ∈ Ω∞.

The genericity hypothesis is essential to the lemma as stated. Although the proof
shows that Ω∞ ⊆ Ω even when Ω is not generic, the reverse inclusion is not always
true when Ω is not generic. The following example gives a taste of how things are
more complicated in the general case. Let A = y(y− 1)2 + 1 and P = x2(x− 1). Note
that [P ≥ 0] is not the closure of [P > 0] because [P ≥ 0] contains the line [x = 0],
which is not in the closure of [P > 0] since P is negative around x = 0. Similarly,
[A2 ≤ 1] is not the closure of [A2 < 1] because of the line [y = 1]. As a consequence,
[A = 1, P ≥ 0] is only partially contained in lim[An ≤ P ]; only [A = 1, P ≥ 1] is part
of the limit set. This example is typical of what happens in general: lim[A2n ≤ P ] is
equal to [A2 ≤ 1, P ≥ 0], except that P ≥ 1 when A = 1+, and A = 1 when P = 0−.

The next lemma generalizes Lemma 2 and the xn + yn = 1 example given in §1:

Lemma 3. — Let A1, . . . , Ak and P be polynomials. Then

lim[A2n
1 + · · ·+A2n

k ≤ P ] =
k⋂

i=1

lim[A2n
i ≤ P ] = [A2

1 ≤ 1, . . . , A2
k ≤ 1, P ≥ 0].

Proof. — Take z ∈ lim[A2n
1 + · · ·+ A2n

k ≤ P ]. Then there are sequences zn → z and
kn →∞ such that Ai(zn)2kn ≤ A1(zn)2kn + · · ·+Ak(zn)2kn ≤ P (zn). So

lim[A2n
1 + · · ·+A2n

k ≤ P ] ⊆
k⋂

i=1

lim[A2n
i ≤ P ] =

k⋂
i=1

[A2
i ≤ 1, P ≥ 0],

by Lemma 2. Hence z ∈ [A2
1 ≤ 1, . . . , A2

k ≤ 1, P ≥ 0].
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