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ON THE DEFINITION OF THE GALOIS GROUPOID

by

Hiroshi Umemura

For José Manuel Aroca on the occasion of his 60th birthday

Abstract. — We sketch a proof of equivalence of two general differential Galois theories,
Malgrange’s theoy and ours, if the base field consists only of constants.

Résumé (Sur la définition du groupoïde de Galois). — Nous esquissons la démonstration du
fait que deux théories de Galois, la théorie de Malgrange et la nôtre, sont équivalentes
dans le cas absolu, i.e. quand le corps de base consiste uniquement en des constantes.

1. Introduction

Today we have two general differential Galois theories [4] and [3]. While the first
published in 1996 is a Galois theory of differential field extensions, the latter proposed
in 2001 is a Galois theory of foliations on varieties. They look somehow different but
specialists observed coincidence in examples. The aim of this note is to sketch in
fact they are equivalent in the absolute case, by which we mean the case where the
base field K of the differential field extension L/K consists of only constants. For the
relative case or for a general differential field extension L/K, there may be a similar
result but there are subtle questions. First of all we must have an adequate definition
of the Galois groupoid for the extension L/K in terms of foliations in the spirit of
[3].(1)

We show by analyzing a non-trivial interesting example, the equivalence. Given a
differential field, it is an algebraic counter part of a dynamical system on a algebraic
variety. If we observe this dynamical system closely by algebraic method, or if an
algebraist observes the dynamical system, then we get as a natural object Galois
groupoid of the dynamical system, or of the given differential field. This procedure of
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observation is done through the universal Taylor morphism and ties Malgrange’s idea
and ours.

2. Differential fields and dynamical systems

A differential field (L, δ) consists of a field L and a derivation δ : L → L. So we
have δ(a + b)) = δ(a) + δ(b) and δ(ab) = δ(a)b + aδ(b) for every a, b ∈ L. Similarly
we define a differential ring (R, δ). An element a of a differential field or a differential
ring is called a constant if δ(a) = 0. The set CL or CR of constants forms respectively
a subfield or subring.

Now we consider a differential field that is finitely generated as an abstract field
over the complex number field C in such a way that the complex number field C is a
subfield of the field CL of constants.

Remark 2.1. — In the sequel, we work over the complex number field C so that the
reader has a concrete image, we may replace, however, the complex number field C by
any field of characteristic 0.

We explain by examples that a differential field is an algebraic counter part of a
differential dynamical system on an algebraic variety.

Example 2.1. Let us consider the differential field (C(x), d/dx), where x is a
variable over C and hence C(x) is the rational function field of one variable. A geo-
metric model of the differential field (C(x), d/dx) is a dynamical system (A1, d/dx) =

(Spec C[x], d/dx). In other words, the field of rational functions of the affine line A1

with derivation d/dx gives the differential field (C(x), d/dx).

Remark 2.2. — Since for any non-empty Zariski open subset U of A1, (U, d/dx) satis-
fies the condition required above, the general model of the differential field (C(x), d/dx)

is (A1− (a finite number of points ), d/dx). The model is determined up to birational
equivalence.

Example 2.2. Let x, y be two independent variables over C so that C[x, y] is a
polynomial ring over C. Let us consider the differential field

(C(x, y), ∂/∂x+ y∂/∂y).

A model of this differential field is the (x, y)-plane A2 or Spec C[x, y] with vector field
∂/∂x+ y∂/∂y. A general flow on the affine plane A2 is given by (t, c exp t), t ∈ C for
a fixed c ∈ C. In this Example we may replace the affine plane A2 by any non-empty
Zariski open set of A2.

Generally we can prove the following proposition.

Proposition 2.1. — Let (L, δ) be a differential field such that the field L is of finite type
over the complex number field C and C is a subfield of the field CL of constants of
(L, δ). Then there exists a smooth algebraic variety V over C, with regular algebraic
vector field X such that (V, X) is a model of the differential field (L, δ). In other
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words , the rational function field C(V ) of V is isomorphic to the field L and the
vector field X is identified with the derivation δ through this isomorphism.

See Lemma (1.5), [5].

3. Groupoids

We need a seemingly abstract definition of groupoid but it is as concrete as vector
space.

Definition 3.1. — A groupoid is a small category G in which all morphisms are iso-
morphisms. An object of G is called a vertex and a morphism in G is called an element
of G.

The groupoid was introduced by Brandt in 1926. In 1950’s Ehresmann used
groupoids in theory of foliations. In 1960’s Grothendieck studied quotients by
groupoids in algebraic geometry. Here are examples of groupoids to have an image of
groupoids.

Example 3.1. A group G is a groupoid. We define a category C that is a groupoid.
The object of the category C is one point P , i.e. ob C = {P} . We set

Hom (P, P ) = G

and compose two morphisms of Hom (P, P ) = G according as the group law of G.

Example 3.2. Equivalence relation ∼ on a set X. The set obG of the objects of
the groupoid G is the set X. For x, y ∈ obG, we define

Hom (x, y) =

{
1 morphism, if x ∼ y,

∅, otherwise.

Since every element x is equivalent to itself, we have the identity Idx. Since equivalence
relation is reflexive, every morphism is an isomorphism. Since equivalence relation
is transitive, we can compose two morphisms. So the above definition yields us a
groupoid.

Example 3.3. Group operation (G,X) of a group G on a set X is a groupoid. The
set obC of the groupoid C is the set X. For x, y ∈ X = obC, we set Hom (x, y) =

{g ∈ G|gx = y}. If g ∈ Hom (x, y) and h ∈ Hom (y, z), then gx = y and hy = z

by definition so that z = hy = h(gx) = (hg)x and consequently hg ∈ Hom (x, z). So
we can compose two morphisms. If gx = y, then hy = x, h being g−1 so that every
morphism is an isomorphism.

Example 3.4. Poincaré groupoid. Let X be a topological space. Let obG of the
category be the set X. A path from a point x ∈ X to another point y ∈ X is a
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continuous map ϕ : [0, 1] → X from the interval [0, 1] to the topological space X
such that ϕ(0) = x and ϕ(1) = y. We set in the category G,

Hom (x, y) := the set of paths from x to y modulo homotopy equivalence.

Then it is well-know that the category G is a groupoid, which is called a Poincaré
groupoid.

Now let G be a groupoid . We set

Y := {morphisms in the category G}

and
X := obG.

Let ϕ ∈ Y so that ϕ ∈ Hom (A, B) for some A, B ∈ obG. Let us denote the source
A of ϕ by s(ϕ) and the target B of ϕ by t(ϕ). So we get two maps s : Y → X and
t : Y → X. Let (Y, t) × (Y, s) be the fiber product of t : Y → X and s : Y → X so
that

(Y, t)× (Y, s) = {(ϕ, ψ) ∈ Y × Y |s(ϕ) = t(ψ)}.
The composition of morphisms defines a map

Φ : (Y, t)× (Y, s)→ Y, (ϕ, ψ) 7→ ψ ◦ ϕ.

The associativity of the composition is described by a commutative diagram that we
do not make precise. See [2]. The existence of the identity map IdA for every A ∈ obG
as well as the property called symmetry that every morphism is an isomorphism is
also characterized in terms of maps and commutative diagrams.

Here is a summary of the above observation. Groupoid is described by two sets Y
and X, two maps s : Y → X and t : Y → X and the composition maps

Φ : (Y, t)× (Y, s)→ Y, (ϕ, ψ) 7→ ψ ◦ ϕ.

that satisfy certain commutative diagrams and so on.
This allows us to generalize the notion of groupoid in a category in which fiber

product exists. This is exactly by the same way as we define an algebraic group G

requiring that, first of all, G is an algebraic variety, the composition law G×G→ G

is a morphism of algebraic varieties and so on.

Definition 3.2. — Let C be a category in which fiber product exists. A groupoid in
the category C consists of two objects Y, X ∈ obC, two morphisms s : Y → X and
t : Y → X and a morphism

Φ : (Y, t)× (Y, s)→ Y

etc, satisfying the above conditions (cf. Grothendieck [2])

Example 3.5. Let C be the category of algebraic varieties defined over a field k
and let (G, V ) be an operation of an algebraic group on an algebraic variety V defined
over k. We have two morphisms p, h from G× V to V , namely the second projection
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p and the group operation h(g, v) = gv. Then Y = G ×X, X = V s = p and t = h

is a groupoid in the category C. Compare to Example 3.3.

We need a tool, an algebraic D-groupoid that generalizes Example 3.5.

4. Lie groupoids and D-groupoids

For a complex manifold V , we can attach its invertible jets J∗(V × V ) that is a
groupoid over V × V in the category of analytic spaces. We recall the definition for
V = C. The jet space J(C×C) is an infinite dimensional analytic space C×CN with
coordinate system (x, , y0, y1, y2, . . . ), We have two morphisms s : J(C×C)→ C and
t : J(C× C)→ C given by

s((x, , y0, y1, y2, . . . )) = x and t((x, , y0, y1, y2, . . . )) = y0.

So we have a morphism (s, t) : J(C × C) → C × C that makes J(C × C) an infinite
dimensional affine space over C×C. The invertible jet space J∗(C×C) is , by definition,
the Zarisiki open set of J(C× C). Namely,

J∗(C× C) := {(x, y0, y1, y2, . . . ) ∈ J(C× C)| y1 6= 0 }.

We simply denote J∗(C×C) by J∗ and we write the restrictions of the morphisms s, t
to the Zariski open set J∗ by the same letters. Now we explain J∗ with two morphisms
s : J∗ → C and t : J∗ → C is a groupoid. To this end we must define the composite
morphism Φ : (J∗, t)× (J∗, s)→ J∗. Let

ϕ = (x, y0, y1, . . . ), ψ = (u, v0, v1, . . . ),

be points of J∗ such that y0 = t(ϕ) = s(ψ) = u, i.e. (ϕ, ψ) is a point of (J∗, t)×(J∗, s).
Then we set

(1) Φ(ψ, ϕ) := (x, v0, y1v1, y2v1 + y2
1v2, . . . ).

The n-th component of Φ(ψ,ϕ) is given by the following rule. Imagine formally that ϕ
were a function of x taking the value y0 at x, or ϕ(x) = y0, with ϕ′(x) = y1, ϕ

′′(x) =

y2 . . . . Similarly consider as if ψ were a function of u with ψ(u) = v0, ψ
′(u) =

v1, ψ
′′(u) = v2, . . . . Then Φ(ψ,ϕ) is the composite function ψ ◦ϕ, which is a function

of x, so that its n-th component is the value of dnψ ◦ ϕ/dxn at x. For example ,

d(ψ ◦ ϕ)/dx = ψuϕx = y1v1, d
2(ψ ◦ ϕ)/dx2 = ϕxxψu + ϕ2

xψuu = y2v1 + y2
1u2, . . .

One can check this composition law is associative and the inverse of

ϕ = (x, y0, y1, . . . )

is given by the inverse function x(y0) and its derivatives dnx(y0)/dyn
0 for n ∈ N,

namely by
(y0, x, 1/y1, −y2/y3

1 , . . . ).

We can very naturally extend this construction over a complex manifold of any di-
mension.
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