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1. The errors to be corrected

The present erratum is meant to correct two errors in the article [2]. The first
is an error in the definition of Faltings’s topology ([2], §4.2 following [4], page 214)
and was pointed out to us by Ahmed Abbes. The correction follows suggestions of
A. Abbes based on ideas behind the notion of oriented product of toposes introduced
by P. Deligne and L. Illusie. The second error is the statement and proof of Proposition
4.4.2, 6) and 7). We thank A. Abbes for discussions regarding this issue as well.

Our basic setting is the following. Let p > 0 be a prime integer, k a perfect field
of characteristic p, W := W(k) the ring of Witt vectors with coefficients in k and
K := Frac(W ) be the fraction field of W . We denote by K an algebraic closure of
K and by GK := Gal(K/K). We fix a field M such that K ⊂ M ⊂ K. Let X be a
smooth scheme of finite type or a smooth formal scheme topologically of finite type
defined over W .

2. Faltings’s topology

The algebraic case. We first suppose that X/W is a smooth scheme of finite type. We
define the category EXM as follows:

a) the objects are pairs of morphisms of schemes (g : U → X, f : W → UM ), where
g is an étale morphism and f is a finite and étale morphism. We will usually write
(U,W ) to denote this object in order to shorten the notation.

b) a morphism (U ′,W ′) → (U,W ) in EXM is a pair of morphisms (α, β) where
α : U ′ → U is a morphism of schemes over X and β : W ′ → W is a morphism of
schemes which makes the following diagram commute

W ′
β−→ W

↓ ↓
U ′M

αM−→ UM
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c) Let (U,W ) be an object of EXM and let {(Ui,Wi)→ (U,W )}i∈I be a family of
morphisms in EXM . We say that this is a covering family of type (α) if

(α): {Ui → U}i∈I is a covering in Xet, by which we denote étale site of X and
Wi
∼= W ×U Ui for every i.

and of type (β) if
(β): Ui ∼= U for every i ∈ I and {Wi → W}i∈I is a covering in (XM )et, which

denotes the étale site of XM .
We endow the category EXM with the topology TXM generated by the covering

families of type (α) and (β) and call it Faltings’s topology associated to the data
(X,M). We denote the associated site by XM and the topos of sheaves of sets on XM
by Sh(XM ).

Remark 2.1. — Our definition of the site XM and its associated topology in [2] §4.2
is the original definition from [4], page 214. Such definition is wrong in the sense that
the presheaf OXM defined in definition 5.4.1 of [2] (and in [4] page 219-221) is not a
sheaf in general and its sheafification does not have the required properties in order
to relate it to relative Fontaine’s theory (see [3] Example 2.2 for a simple counter
example). With the new definition above the presheaf OXM is a sheaf and has the
required properties. For a detailed proof see [3, Proposition 2.11]. We remark, though,
that the description of the associated topos in [4] corresponds to the definition of the
topology given above and not to the topology given in loc. cit.

Remark 2.2. — One could define the category EZ
XM

in an analogue way by replacing
the étale topology Xet with the Zariski topology XZar, i.e. an object is a pair of
morphisms (g : U → X, f : W → UM ) such that g is an open immersion and f is a
finite étale morphism. If one now endows the category EZ

XM
with the covering families

as defined in section 4.2 of [2], then the presheaf OXZ
M

would be in fact a sheaf. So in
this setting the definition of the topology given in section 4.2 of [2] is the right one.
However to prove the results of [2], namely those of GAGA type, one needs to work
with Xet.

Remark 2.3. — In the definition of the coverings of type (β) we allow {Wi →W}i∈I
to be a covering in (XM )et. However for every i ∈ I, the composition Wi → W →
UM ∼= Ui,M is a finite étale morphism and so the morphism Wi → W is finite étale.
As W has only a finite number of connected components, I contains a finite subset
I ′ such that the family {Wi →W}i∈I′ is a covering in (XM )et, i.e. it is a covering in
(XM )fet, by which we have denoted the finite étale topology on XM .

We’ll now give an alternative definition of the topology TXM and study some of
its properties supplying details which are missing from the literature.

Definition 2.4. — Let {(Uij ,Wij)→ (U,W )}i∈I,j∈J be a family of morphisms in EXM .
We say this family is a strict covering family of (U,W ) if

a) For every i ∈ I there exists Ui object of Xet such that Ui ∼= Uij for every j ∈ J ;
b) The family {Ui → U}i∈I is a covering family in Xet.
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c) For every fixed i ∈ I the family {Wij →W ×U Ui}j∈J is a covering in (XM )et.

If {(Uij ,Wij)→ (U,W )}i∈I,j∈J is a strict covering family of (U,W ) and for every
i ∈ I, Ui is the object defined by a) of definition 2.4 then we will denote this family
by {(Ui,Wij)→ (U,W )}i∈I,j∈J .

Remark 2.5. — Let us observe that if {(Ui,Wij)→ (U,W )}i∈I,j∈J is a strict covering
family of (U,W ), then {(Ui,Wij)→ (U,W )}i∈I,j∈J is the composite(

{(Ui,Wij) −→ (Ui,W ×U Ui)}j∈J
)
i∈I
◦
(
{(Ui,W ×U Ui) −→ (U,W )}i∈I

)
and for every i ∈ I {(Ui,Wij) → (Ui,W ×U Ui)}j∈J is a covering of type (β) while
{(Ui,W ×U Ui)→ (U,W )}i∈I is a covering of type (α). Therefore the strict covering
families are coverings in XM .

On the other hand, clearly coverings of type (α) and (β) are strict coverings and
therefore the strict covering families also generate the topology TXM .

Proposition 2.6. — The finite projective limits are representable in EXM .

Proof. — It suffices to show that given morphisms

(U ′,W ′) −→ (U,W )←− (U ′′,W ′′)

the fiber product of (U ′,W ′) and (U ′′,W ′′) over (U,W ) exists. We define it as follows:
(U ′,W ′)×(U,W ) (U ′′,W ′′) := (U ′×U U ′′,W ′×W ,W ′′), with the map γ : W ′×WW ′′ →
(U ′ ×U U ′′)M = UM ×UM U ′′M induced by the fiber product of the maps W ′ → U ′M
and W ′′ → U ′′M .

We have to check that γ is finite and étale. For this let us remark that γ is the
composition of the natural maps

W ′ ×W W ′′ −→W ′ ×UM W ×UM W ′′ −→ U ′M ×UM U ′′M .

As W ′ → U ′M and W ′′ → U ′′M are finite étale maps, the base changes W ′ ×UM W →
U ′M ×UMW andW ′′×UMW → U ′′M ×UMW are finite and étale. Therefore the natural
map W ′×UM W ×UM W ′′ → U ′M ×UM U ′′M ×UM W is finite and étale. Now as the map
W → UM is finite and étale it follows that the natural map (U ′M ×UM U ′′M )×UM W →
U ′M ×UM U ′′M is finite étale. Let us now examine the map ρ : W ′ ×W W ′′ → W ′ ×UM
W ×UM W ′′. Let us consider the diagonal ∆W : W → W ×UM W . As W → UM is a
finite and étale map, ∆W is an open and closed morphism. Consider the diagram

W ×UM W

↓
W ′ −→ W

where the vertical arrow is the projection on the first component.
Let us observe that the map W ′ → W ′ ×UM W defined by the identity and the

map W ′ → W is the pull back of ∆W via the map W ′ → W in the above diagram.
It follows that W ′ → W ′ ×UM W is an open and closed morphism which implies
that it is finite and étale. Similarly the morphism W ′′ → W ′′ ×UM W is finite and
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étale which implies that ρ is finite and étale. Finally, the object of EXM defined
above (U ′ ×U U ′′,W ′ ×W W ′′) obviously satisfies the universal property of the fiber
product.

Remark 2.7. — The category EXM with the strict covering families does not form a
pretopology. Indeed due to proposition 2.6 the strict covering families satisfy PT0,
PT1 and PT3 of [1, Def. II.1.3], but contrary to what was stated in [2] in the formal
setting and as was pointed out to us by A. Abbes they do not satisfy PT2. However, the
covering families of the pretopology PTXM generated by the strict covering families
are composite of a finite number of strict covering families (or composite of a finite
number of covering families of type (α) and (β)).

It follows from a direct check or from [1, Cor. II.2.3] that a presheaf on EXM
is a sheaf if and only if it satisfies the exactness properties for the strict covering
families. Moreover, the next lemma 2.8 and [1, Rmk. II.3.3] show that one can use
strict coverings in order to compute the sheaf associated to a presheaf as done in [2].

Lemma 2.8. — Let (U,W ) be an object of EXM . Then the strict covering families of
(U,W ) are cofinal in the collection of all covering families of (U,W ) in PTXM .

Proof. — Consider a covering family C of (U,W ) in PTXM . By Remark 2.7 C is a
composite of n strict covering families C = Cn → Cn−1 → · · · → C1. We will prove
by induction on n that we can find a covering family of every open of C such that
the induced covering of (U,W ) is a strict covering family.

For n = 1 there is nothing to prove so let us assume that n = 2. We write C1 =

{(Ui,Wij)} and C2 = {(Uijα,Wijαβ)} such that {(Uijα,Wijαβ) → (Ui,Wij)}αβ are
strict coverings for every i, j. For fixed i, j, α we denote by Iijα the set over which the
β’s vary. For every i let us choose a finite set Mi of indices j such that the family
{Wij → Ui ×U W}j∈Mi

is a covering in Xet
M .

Now we fix i, j, α and denote Mij := Mi ∪ {j}. Let x denote a geometric point of
Uijα and let xi denote the image of x in Ui. For every j′ ∈ Mij , because {Uij′α′ →
Ui}α′ is a covering in Xet there is an α′ and a geometric point x′ of Uij′α′ mapping
to xi. We denote

Uijαx := ×UiUij′α′ where the product is over j′ ∈Mij .

Then keeping in mind that j ∈Mij , we have a natural projection map Uijαx → Uijα
such that there is a geometric point of Uijαx mapping under it to x. Therefore the
collection {Uijαx → Uijα}x is a covering in Xet.

For every i, j, α as above, for every geometric point x of Uijα, j′ ∈Mij and β ∈ Iijα
we denote by

Wijj′αβx := Wij′α′β ×Uij′α′ Uijαx.

In particular the collection {(Uijαx,Wijj′αβx)→ (Uij′α′ ,Wij′α′β)}x is a covering fam-
ily of type α), i.e. it is a strict covering family. Putting together all these covering
families for varying i, j, j′, α, β and x we obtain a refinement D → C2.
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We observe that (1) the family {Wij′α′β → Wij′ ×Ui Uij′α′}β∈Iijα is a covering in
Xet
M and (2) The family {(Wij′ ×Ui Uijαx →W ×U Uijαx}j′∈Mij

is also a covering in
Xet
M . It follows that for all i, j, α, x the family

{Wijj′αβx = Wij′αβ ×Uij′α′ Uijαx −→W ×U Uijαx}j′∈Mij ,β∈Iijα

is a covering family and hence the family {(Uijαx,Wijj′αβx) → (U,W )}ijj′αβx is a
strict covering family as claimed. This ends the case n = 2.

Suppose now that the statement of the lemma is true for a chain ofN strict covering
families and let us prove it for n = N + 1. By induction we can refine CN by a strict
covering family C ′N → CN such that the induced covering of (U,W ) is a strict covering
family. But strict covering families are stable by fiber product therefore by replacing
CN by C ′N and CN+1 by its base change C ′N+1 via C ′N → CN we are reduced again
to the case n = 2. I.e. there is a refinement C ′′ of C ′N+1, which is strict such that the
covering C ′′ → (U,W ) is strict. Therefore the covering C ′′ → CN+1 is a refinement
(it is not necessarily strict) such that the family C ′′ → (U,W ) is a strict covering
family. This proves the claim.

The formal case. — The definition of the topology is treated in detail in §2 of [3].
We notice that in the formal setting the definition given in loc. cit. is the correct one.
Contrary to 2.2 in the formal setting even if we work with the Zariski site of X instead
of the étale site, the correct topology is not the one defined originally by Faltings.
The analogues of Lemma 2.8 and of the fact that OXM is a sheaf in the formal case,
not proved in loc. cit., are similar to the ones in the algebraic case and are left to the
reader.

3. Geometric points of XM

Let us first point out that Proposition 4.4.2, 6) and 7) of [2] (both statements and
proofs) are true if M0 = K and if we use the pointed site X•M . Let us recall that
M0 is the completion of the maximal unramified extension of K in M . However, in
general, (using notations as in the Proposition 4.4.2) the scheme Spec(Osh

X,x̂ ⊗OK M)

has [M0 : K] components which have to be accounted for. It is possible to refine the
argument in [2] and repare that proof. Here we prefer to give a new and conceptually
clearer proof of Proposition 4.4.2 for the site XM based on results in [1]. We will first
refine the notion of “geometric point” of XM .

Geometric points of XM . — According to [1] a point of XM is simply a morphism
of toposes Sets → Sh(XM ). In this section we will give an explicit description of a
particular class of points of XM arising from morphisms of sites XM → Sets, which
we call geometric points. We show that they are enough to separate sheaves (this will
correct the proof in [2] in the algebraic setting.)

Definition 3.1. — We define a geometric point of XM to be a pair (x, y) where
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