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THE SPACE OF GENERALIZED FORMAL POWER SERIES
SOLUTIONS OF AN ORDINARY DIFFERENTIAL

EQUATION

by

José Cano & Pedro Fortuny Ayuso

A José Manuel Aroca, maestro y amigo

Abstract. — We prove that the set of truncations of generalized power series solutions
of an ordinary differential equations is contained in a semi-algebraic set of dimension
bounded by twice the order of the differential equation.

Résumé (L’espace des séries formelles généralisées qui sont solution d’une équation différentielle
ordinaire)

Nous montrons que l’ensemble des troncations de séries généralisées qui sont so-
lutions d’une équation différentielle ordinaire est contenu dans un ensemble semi-
algébrique dont la dimension est bornée par le double de l’ordre de l’équation diffé-
rentielle.

1. Introduction

Consider a polynomial differential equation F (∂0(y), . . . , ∂n(y)) = 0, where
F (y0, . . . , yn) is a polynomial in the variables y0, . . . , yn with coefficients in C[xR]

(polynomials with real exponents). We are interested in series solutions of (F = 0)

of the form
∑∞
i=1 ci x

µi , where ci ∈ C and µi ∈ R with µ1 < µ2 · · · (so called
generalized power series). D.Y. Grigor’ev and M. Singer describe in [5] a parametric
version of the Newton polygon process applied to F , which for each integer k, gives
rise to a semi-algebraic subset NIC?k(F ) ⊆ R3k so that the space of truncations of
length k of generalized power series solution of (F = 0) is included in NIC?k(F ). The
main contribution of this paper is to prove that the dimension of this semi-algebraic
set is bounded by 2n. More precisely, its adapted dimension (see subsection 3.2) is
bounded by n. The adapted dimension is a proper measure of the number of free
parameters (real or complex, coefficient or exponent) which have been introduced
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along the Newton polygon process in a parametric family of power series solution of
a differential equation.

Briot and Bouquet [1] in 1856 use the Newton polygon for studying first order and
first degree ordinary differential equations and Fine [4] in 1889 gives a description of
the method for ordinary differential equation of arbitrary order. In section 2 we present
a brief introduction to its classical version. In section 4 we introduce the notion of
parametric Newton polygon: specifically, we define it and give some technical results
about parametric polynomials which will be used in the proof of the main theorem.

In section 3 we state the main theorem and give a straightforward proof for the
case k = 1. The general case is dealt with in section 5.

2. Newton polygon of an ODE

A well-ordered series with complex coefficients and real exponents is a series φ(x) =∑
α∈S cα x

α, where cα ∈ C, and S is a well ordered subset of R. If there exist a finitely
generated semi-group Γ of R≥0 and γ ∈ R, such that, S ⊆ γ+Γ, then we say that φ(x)

is a grid-based series (this terminology comes from [6].) Let C((x))w and C((x))g be
the sets of well-ordered series and of grid-based series, respectively. We denote C[xR]

the subring of series in C((x))g with finite support (polynomials, so to speak). It is
well-know (see [7], for example), that both C((x))w and C((x))g are actually fields.
Both are differential rings with the usual inner operations and the differential operator
∂ = x d

d x :

∂
Ä∑

cα x
α
ä

=
∑

α cα x
α.

Denote by ∂0 the identity operator and for positive integer i, ∂i = ∂ ◦ ∂i−1.
Let F (y0, . . . , yn) be a polynomial in the variables y0, . . . , yn with coefficients in

C[xR]. The differential equation

F
(
∂0(y), ∂1(y), . . . , ∂n(y)) = 0

will be denoted by F (y) = 0. Notice that any polynomial ordinary differential equation
can be rewritten in this form.

We are interested in solutions of F (y) = 0 in the field C((x))w. By virtue of [2, 5, 6],
all of them are actually in C((x))g.

Write F in a uniquely, using the standard multiindex notation yρ = yρ00 · · · yρnn (
where ρ = (ρ0, . . . , ρn)) as

F =
∑
α,ρ

Aα,ρ x
α yρ, with Aα,ρ ∈ C,

where α and ρ run over finite subsets of R and Nn+1 respectively. The cloud of points
of F is the set

P(F ) = {(α, |ρ|) : Aα,ρ 6= 0},
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where |ρ| = ρ0 + · · ·+ ρn. The Newton polygon N (F ) of F is the convex hull of⋃
P∈ P(F )

(P + {(a, 0) | a ≥ 0}) .

Notice that N (F ) has a finite number of vertices, all of whose ordinates are non-
negative integers.

Given a line L ⊆ R2 with slope −1/µ, we say that µ is the inclination of L. Let
µ ∈ R, we denote L(F ;µ) the supporting line of N (F ) with inclination µ (i.e. the only
line L with inclination µ such that N (F ) is contained in the right closed half-plane
defined by L and L ∩ N (F ) 6= ∅). More precisely, L(F ;µ) is the set of points (a, b)

in R2 such that a+ µb = ν(F ;µ), where ν(F ;µ) = min{α+ µ |ρ| ;Aα,ρ 6= 0}.
For any µ ∈ R, define the polynomial

(1) Φ(F ;µ)(c) =
∑

(α,|ρ|)∈L(F ;µ)

Aα,ρ µ
w(ρ) c|ρ| ∈ C[c],

where w(ρ) = ρ1 + 2ρ2 + · · ·+ nρn. The Newton polygon data of F will be the set of
vertices v0, . . . , vt (ordered with decreasing ordinate), the sides [vi, vi+1], 0 ≤ i < t,
the indicial polynomials associated to each vertex v:

(2) Ψ(F ;v)(m) =
∑

(α,|ρ|)=v

Aα,ρm
w(ρ) ∈ C[m].

and the characteristic polynomials associated to each side [vi, vi+1]:

Φ(F ;[vi,vi+1])(c) = Φ(F ;µ[vi,vi+1])(c),

where µ[vi,vi+1] is the inclination of side [vi, vi+1].

2.1. Necessary Initial Conditions. — Given a well-ordered formal power series
y(x) =

∑
α∈S cα x

α, its order, ord(y(x)), is infinity if y(x) = 0 and min{α ∈ S | cα 6=
0} otherwise.

Lemma 1. — Let y(x) = c xµ+
∑
α>µ cα x

α ∈ C((x))w be a solution of the differential
equation F (y) = 0. Then

Φ(F ;µ)(c) = 0.

where c may be zero. In particular, if y(x) = 0 is a solution of F (y) = 0 then
Φ(F ;µ)(0) = 0 for all µ.
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Proof. — Developing F

F (c xµ + · · · ) =∑
α,ρ

Aα,ρ x
α (c xµ + · · · )ρ0(µc xµ + · · · )ρ1 · · · (µnc xµ + · · · )ρn =

∑
α,ρ

¶
Aα,ρ c

|ρ| µw(ρ)xα+µ|ρ| + · · ·
©

= ∑
α+µ |ρ|=ν(F ;µ)

Aα,ρ c
|ρ| µw(ρ)

xν(F ;µ) + · · · ,

where dots · · · stand for monomials of order greater than the exponent of x in the
preceding term. The lemma follows from the fact that α+ µ |ρ| = ν(F ;µ) if and only
if (α, |ρ|) ∈ L(F ;µ).

Notation 1. — Let ϕ ∈ C((x))g and F (y0, . . . , yn) ∈ C((x))g[y0, . . . , yn], denote

F (ϕ+ y) = F (ϕ+ y0, ∂(ϕ) + y1, . . . , ∂n(ϕ) + yn) ∈ C((x))g[y0, . . . , yn].

Definition 1. — Given F (y0, . . . , yn) and a positive integer k, define the set of nec-
essary k-initials conditions, NICk(F ), to be the subset of (R × C)k of the points
(µ1, c1, . . . , µk, ck) ∈ (R× C)k such that

µ1 < · · · < µk, and

Φ(F1;µ1)(c1) = 0, . . . ,Φ(Fk;µk)(ck) = 0,

where F1(y) = F (y) and Fi+1(y) = Fi(ci x
µi + y), for 1 ≤ i < k.

Define the NIC∗k(F ) = NICk(F ) ∩ (R× C∗)k, where C∗ = C \ {0}.

Corollary 1. — If y(x) =
∑k
i=1 cix

µi +
∑
µk<α

cαx
α is a solution of F (y) = 0 with

µ1 < · · · < µk, then
(µ1, c1, . . . , µk, ck) ∈ NICk(F ).

Corollary 2. — Let v0, . . . , vt be the vertices of N (F ), ordered by decreasing ordinate.
Let µi, 1 ≤ i ≤ t be the inclination of the side [vi−1, vi]. Set µ0 = −∞ and µt+1 = +∞.
The subset NIC1(F ) ⊆ (R × C) is semi-algebraic. Moreover, NIC∗1(F ) is the finite
union of the semi-algebraic sets corresponding to the sides of the Newton polygon of
F :

{(µ, c) ∈ R× C∗ ;µ = µi, and Φ(F ;µi)(c) = 0}, 1 ≤ i ≤ t,
and the semi-algebraic sets corresponding to the vertices:

{(µ, c) ∈ R× C∗ ;µi < µ < µi+1, and Ψ(F ;vi)(µ) = 0}, 0 ≤ i ≤ t.

Proof. — Let µ ∈ R, µi < µ < µi+1, for some 0 ≤ i ≤ t. As L(F ;µ) ∩ N (F ) = vi
and Φ(F ;µ)(c) = ch Ψ(F ;vi)(µ), (where h is the ordinate of vi) then, for c 6= 0 and
µi < µ < µi+1, one has Φ(F ;µ)(c) = 0 if and only if Ψ(F ;vi)(µ) = 0, and we are
done.
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Let µ ∈ R be a real number and fix a point (a, h) ∈ R× N.

Definition 2. — We say that (a, h) belongs to the red part with respect to µ of the
Newton polygon of F (y) if h ≥ 1 and either (a, h) is the vertex of N (F ) with minimum
ordinate or it belongs to a side of N (F ) with inclination greater than µ.

Notice that if the red part with respect to µ of N (F ) is empty, then there are no
generalized power series solution of (F = 0) of order greater than µ: the vertex (a, h)

with minimum ordinate has h = 0 and all the sides of N (F ) have inclination less
than or equal to µ, hence for γ > µ, the polynomial Φ(F ;µ)(c) is a non-zero constant
and by Corollary 2 the set NIC∗1(F ) is empty. The reciprocal is not true as Example 1
(page 65) shows.

Lemma 2. — Let (µ1, c1, . . . , µk, ck) ∈ NIC∗k(F ), ϕ =
∑k
j=1 cj x

µj and Fk+1(y) =

F (ϕ+ y). The red part of N (Fk+1(y)) with respect to µk nonempty.

Proof. — Let (µ, c) ∈ NIC∗1(F ) and consider G = F (c xµ + y). The red part of the
Newton polygon of G with respect to µ is not empty. To see this, let v0, . . . , vt be the
vertices of N (F ) ordered by decreasing ordinate and let vk be the vertex with highest
ordinate in L(F ;µ) ∩ N (F ). The ordinate of this vk is greater than zero because
otherwise Φ(F ;µ)(c) would be a nonzero constant, in contradiction with the fact that
Φ(F ;µ)(c) = 0.

Returning to the main argument, given a monomial M = xαyρ00 · · · yρnn , one may
write

(3) M(c xµ + y) = xα
n∏
i=0

(c µi xµ + yi)
ρi = M +R,

where the points corresponding to the monomials of R have ordinate less than |ρ| and
belong to the line with inclination µ passing through (α, |ρ|). If w is the intersection
of L(F ;µ) with the axis of abscissas, then the cloud of points P(G) of G is contained
in the positive convex hull of {v0, . . . , vk, w}. The coefficient of G corresponding to w
is precisely Φ(F ;µ)(c) = 0, hence w 6∈ P(G). Moreover, {v0, . . . , vk} ⊆ P(G), because
of (3). Therefore v0, . . . , vk are vertices of N (G). Hence either vk is the vertex of
N (G) with minimum ordinate or there exists a side of N (G) with inclination greater
than µ and we are done.

Example 1 (See Figure 1). — Let F = x−1 y6
0 y1+y2

0 y1+x y2
0−3 x y0 y1−x2 y0+2 x2 y1+x5.

The point (1, 1) ∈ NIC∗(F ). Let G = F (x + y). The red part of N (G) with respect to
µ = 1 is vertex v′2 and point p. In this example, there are no solutions of (G = 0) of
order greater than 1.
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