Astérisque

KARL OELJEKLAUS

On the automorphism group of certain hyperbolic domains in \mathbb{C}^2

Astérisque, tome 217 (1993), p. 193-216 http://www.numdam.org/item?id=AST 1993 217 193 0>

© Société mathématique de France, 1993, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the automorphism group of certain hyperbolic domains in \mathbf{C}^2

Karl Oeljeklaus

1 Introduction and Results

Let $Q = Q(z, \bar{z})$ be a subharmonic and non-harmonic polynomial on the complex plane **C** with real values. Then the degree the non-harmonic part Q^N of Q is an even positive number $2k \in \mathbb{N}^*$. In their paper [1], F. Berteloot and G. Cœuré proved that the domain $\Omega_Q = \{(w, z) \in \mathbb{C}^2 \mid \operatorname{Re} w + Q(z, \bar{z}) < 0\}$ is **hyperbolic** for every Q like above. In this note, we consider the positive cone M of all such polynomials and the associated domains $\Omega_Q \subset \mathbb{C}^2$.

Let $Q_1, Q_2 \in M$ and $\Omega_{Q_1}, \Omega_{Q_2}$ be the associated domains. In what follows, we use also Ω , Ω_1 , Ω_2 instead of Ω_Q , Ω_{Q_1} , Ω_{Q_2} if there is no confusion possible. First, we introduce an equivalence relation on the cone M.

Definition 1.1 Let $Q_1, Q_2 \in M$. We say that Q_1 and Q_2 are equivalent $Q_1 \sim Q_2$, if there is a real number $\rho > 0$, a holomorphic polynomial p(z) and an automorphism g(z) of **C** such that

(1.1)
$$Q_1(z,\overline{z}) = \rho \operatorname{Re}(p(z)) + \rho Q_2(g(z),\overline{g(z)}).$$

On the other hand, there is another equivalence relation on M given by the biholomorphy of the domains Ω_{Q_1} and Ω_{Q_2} . The first results states that these two equivalence relations are the same.

Theorem 1.2 Let $Q_1, Q_2 \in M$. Then Ω_1 and Ω_2 are biholomorphic, if and only if the two polynomials Q_1 and Q_2 are equivalent in the sense of definition 1.1. In particular the degrees of the non-harmonic parts Q_1^N and Q_2^N are equal, if the domains Ω_1 and Ω_2 are biholomorphic.

The fact that Ω is hyperbolic implies that the holomorphic automorphism group $\operatorname{Aut}_{\mathcal{O}}(\Omega)$ is a real Lie group and that all isotropy groups of the action of $\operatorname{Aut}_{\mathcal{O}}(\Omega)$ on Ω are compact [3]. We denote by G, G_1, G_2 the connected identity components of $\operatorname{Aut}_{\mathcal{O}}(\Omega)$, $\operatorname{Aut}_{\mathcal{O}}(\Omega_1)$, $\operatorname{Aut}_{\mathcal{O}}(\Omega_2)$. Clearly, if Ω_1 and Ω_2 are biholomorphic, then G_1 and G_2 are isomorphic.

Let $\mathcal{G}, \mathcal{G}_1, \mathcal{G}_2$ denote the Lie algebras of G, G_1, G_2 .

Let J, J_1 , J_2 denote the subgroups of G, G_1 , G_2 generated by the translation $\{(w, z) \mapsto (w+it, z) \mid t \in \mathbf{R}\}$ and j, j_1, j_2 their Lie algebras. Hence the dimension of G, G_1 , G_2 is at least one.

The second result gives a "canonical" defining polynomial for the domain Ω if dim_{**R**} $\mathcal{G} \geq 2$.

Theorem 1.3 Let $\Omega = \{\operatorname{Re} w + Q(z) < 0\}$ as above. Assume that $\dim_{\mathbf{R}} G \geq 2$. Then there are the following cases :

- a) Ω is homogeneous. Then $\Omega \simeq \mathbf{B}_2 = \{|w|^2 + |z|^2 < 1\}$ and $Q \sim P_1 \sim P_2$, where $P_1(z, \overline{z}) = (\operatorname{Re} z)^2$ and $P_2(z, \overline{z}) = |z|^2$.
- b) Ω is not homogeneous.
 - 1) dim_{**R**} G = 2. Then deg $Q^N \ge 4$ and either i) $Q \sim P_1$ or ii) $Q \sim P_2$, or iii) $Q \sim P_3$, where
 - i) $P_1(z, \overline{z}) = P_1(\operatorname{Re} z)$ is an element of M depending only on $\operatorname{Re} z$ and $G \simeq (\mathbf{R}^2, +)$,
 - ii) $P_2(z, \bar{z}) = P_2(|z|^2)$ is an element of M depending only on $|z|^2$, and $G \simeq \mathbf{R} \times S^1$,
 - iii) $P_3(z, \bar{z})$ is a homogeneous polynomial of degree 2k, $k \geq 2$, i.e. $P_3(\lambda z, \lambda \bar{z}) = \lambda^{2k} P_3(z, \bar{z})$ for all $\lambda \in \mathbf{R}$ and G is the non-abelian two dimensional real Lie group.
 - 2) dim_{**R**} $G \ge 3$. Then deg $Q^N \ge 4$ and either i) $Q \sim P_1$ or ii) $Q \sim P_2$ where
 - i) $P_1(z, \bar{z}) = (\operatorname{Re} z)^{2k}$ and G is 3-dimensional and solvable,
 - ii) $P_2(z, \bar{z}) = |z|^{2k}$ and G is 4-dimensional and contains a finite covering of $SL_2(\mathbf{R})$.

We are going to prove the two theorems simultaneously by distinguishing the dimension of G. First we handle the one and two-dimensional cases, then the homogeneous case and we finish with the three and higher dimensional cases.

Before doing so, we prove the easy direction of theorem1.1.

Lemma 1.4 If $Q_1 \sim Q_2$, then Ω_1 and Ω_2 are biholomorphic.

Proof: Assume (1.1). Let $\Psi = (\Psi_1, \Psi_2)$ be the biholomorphic map of \mathbf{C}^2 defined by

(*)
$$\begin{cases} \Psi_1(w,z) = \frac{1}{\rho}w + p(z) \\ \Psi_2(w,z) = g(z) \end{cases}$$

Then $\Psi(\Omega_1) = \Omega_2$.

Remark 1.5 In what follows we will often make a global coordinate change in C^2 like (*), which is coherent with the equivalence of the defining polynomials. In the following, we take the notation from above.

2 The one-dimensional case

Let $\Psi : \Omega_1 \to \Omega_2$ be a biholomorphic map. For a subgroup $N \subset G_2$ let $\Psi^*(N)$ be the group $\Psi^{-1} \circ N \circ \Psi \subset G_1$.

Lemma 2.1 Assume that $\Psi^*(J_2) = J_1$. Then $Q_1 \sim Q_2$.

Proof : From our hypothesis it follows that there is a non-zero real number ρ such that

$$\Psi^{-1} \circ T_t \circ \Psi = T_{\rho t}, \ (T_t(w, z) = (w + it, z)),$$

since Ψ^* is a continuous group isomorphism of two copies of **R**.

So we get with $\Psi = (\Psi_1, \Psi_2)$

$$\begin{split} \Psi_1(w,z) + it &= \Psi_1(w+i\rho t,z) \\ \Psi_2(w,z) &= \Psi_2(w+i\rho t,z) \end{split}$$

which implies :

$$\Psi_1(w,z) = \frac{1}{\rho}w + p(z)$$

$$\Psi_2(w,z) = g(z)$$

with $p \in \mathcal{O}(\mathbf{C})$ and $g \in \operatorname{Aut}_{\mathcal{O}}(\mathbf{C})$, since the projection $\pi : \mathbf{C}^2 \to \mathbf{C}$, $(w, z) \mapsto z$ is surjective on Ω_1 and Ω_2 .

Therefore Ψ is a biholomorphic map of ${\bf C}^2$ which maps Ω_1 to Ω_2 and so we have

$$\begin{split} \Omega_1 &= \{ \operatorname{Re} w + Q_1(z, \bar{z}) < 0 \} = \Psi^{-1}(\Omega_2) \\ &= \{ \operatorname{Re}(\frac{1}{\rho}w + p(z)) + Q_2(g(z), \overline{g(z)}) < 0 \} \\ &= \{ \operatorname{Re} w + \rho \operatorname{Re} p(z) + \rho Q_2(g(z), \overline{g(z)}) < 0 \}. \end{split}$$

It follows that

$$Q_1(z,\bar{z}) = \rho \operatorname{Re} p(z) + \rho Q_2(g(z),\overline{g(z)}).$$

This equality implies the positivity of ρ and the fact that the holomorphic function p(z) is already a polynomial. Hence $Q_1 \sim Q_2$.

We mention the following direct consequence, which is the statement of theorem 1.2 in the case $\dim_{\mathbf{R}} G_1 = 1$.

Corollary 2.2 If dim_{**R**} $G_1 = 1$, then Q_1 and Q_2 are equivalent.

Proof: Here we have $G_1 = J_1$ and $G_2 = J_2$, hence $\Psi^*(J_2) = J_1$.

3 The two-dimensional case

We are going to handle this case in a sequence of lemmas. We always assume that there is a two-dimensional subgroup $H \subset G$ such that $J \subset H$. Since $J \subset G$ is a closed subgroup isomorphic to **R** there are two possibilities for H:

- i) H is abelian and non-compact.
- ii) H is the solvable two dimensional non-abelian Lie group.

Lemma 3.1 Suppose that H is abelian. Then $Q \sim P_1$ or $Q \sim P_2$, where $P_1(z, \bar{z}) = P_1(\operatorname{Re} z)$ is an element of M which depends only on $\operatorname{Re} z$, or $P_2(z, \bar{z}) = P_2(|z|^2)$ is an element of M which depends only on $|z|^2$.

In the first case, the domain $\{\operatorname{Re} w + P_1(\operatorname{Re} z) < 0\}$ realizes the domain Ω as a tube domain.

Proof: Let $L = \{\sigma^t = (\sigma_1^t, \sigma_2^t) \mid t \in \mathbf{R}\}$ be a one parameter group of H such that L and J generate H. The group H being abelian implies that L and J commute and so we get for all $s, t \in \mathbf{R}$:

$$\sigma_1^t(w+is,z) = \sigma_1^t(w,z) + is$$

$$\sigma_1^t(w+is,z) = \sigma_1^t(w,z).$$

The restriction of the projection $\pi: (w, z) \to z$ from \mathbb{C}^2 to Ω being surjective and the second equality imply that

$$\sigma_2^t(w,z) = \sigma_2^t(z)$$