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On the automorphism group of certain hyperbolic 
domains in C2 

Karl Oeljeklaus 

1 Introduction and Results 
Let Q = Q(z, z) be a subharmonic and non-harmonic polynomial on the complex 
plane C with real values. Then the degree the non-harmonic part Q N of Q is an 
even positive number 2k £ N*. In their paper [1], F . Berteloot and G. Cceure 
proved tha t the domain QQ = {(it;, z) £ C2 | Rew + Q(z, z) < 0} is hyperbolic 
for every Q like above. In this note, we consider the positive cone M of all such 
polynomials and the associated domains QQ C C2. 

Let Qi,Q2 £ M and QQ1,QQ2 be the associated domains. In what follows, 
we use also £7, fil5 Q2 instead of QQ, QQ1 , QQ2 if there is no confusion possible. 
First, we introduce an equivalence relation on the cone M. 

Defini t ion 1.1 Let Q\,Qi £ M. We say that Qi and Q2 are equivalent 
Qi ~ Q2, if there is a real number p > 0, a holomorphic polynomial p(z) and 
an automorphism g(z) of C such that 

(1.1) QAz, z) = pRe(p(z)) + pQ2(g(z),g(z)) 

On the other hand, there is another equivalence relation on M given by the 
biholomorphy of the domains QQ1 and Q Q 2 . The first results states that these 
two eauivalence relations are the same. 

T h e o r e m 1.2 LetQi, Q2 £ M. ThenQ\ andQ2 are biholomorphic, if and only 
if the two polynomials Qi and Q2 are equivalent in the sense of definition 1.1. 
In particular the degrees of the non-harmonic parts Q± and are equal, if 
the domains Qi and Q2 are biholomorphic. 

The fact tha t Q is hyperbolic implies that the holomorphic automorphism 
group Auto(f^) is a real Lie group and that all isotropy groups of the action 
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of A u t o ( ^ ) on Q are compact [3]. We denote by G , G i , G 2 the connected 
identity components of Aute>(fi), A u t o ( ^ i ) , Aute>(^2)« Clearly, if Qi and Q2 
are biholomorphic, then G\ and G2 are isomorphic. 

Let Q,Qi,Q2 denote the Lie algebras of G,Gi,G2. 
Let J , J i , J2 denote the subgroups of G, G i , G2 generated by the translation 

{(w, z) 1—• (w+it, z)\te R } and j , j i , J2 their Lie algebras. Hence the dimension 
of G , G i , G2 is at least one. 

The second result gives a "canonical" defining polynomial for the domain Q 
if d i m R £ > 2. 

T h e o r e m 1.3 Let Q = {Rew + Q(z) < 0} as above. Assume that d i m R G > 2. 
Then there are the following cases : 

a) Q is homogeneous. Then Q ~ B 2 = {|w|2 + \z\2 < 1} an^ Q ~ P\ ~ P2, 
where Pi(z,z) = (Rez)2 and P2(z,z) = \z\2. 

b) Q is not homogeneous. 

1) d i m R G = 2. Then degQN > 4 and either i) Q ~ Pi or ii) Q ~ P2, 
or Hi) Q ~ P3, where 

i) Pi(z,z) = Pi (Re 2:) is an element of M depending only on Re 2 
andG~ ( R 2 , + ) , 

ii) P2(z,z) = P2(|^|2) is an element of M depending only on \z\2, 
and G ~ R x S1, 

Hi) Ps(z,z) is a homogeneous polynomial of degree 2k, k > 2, i.e. 
Ps(\z,\z) = X2kPs(z^z) for all A G R and G is the non-abelian 
two dimensional real Lie group. 

2) d i m R G > 3. Then degQN > 4 and either i) Q ~ Pi or ii) Q ~ P2 
where 

i) Pi(z,z) = (Rez)2k andG is 3-dimensional and solvable, 
ii) P2{z,z) = \z\2k and G is ^-dimensional and contains a finite 

covering of SL2(TV). 

We are going to prove the two theorems simultaneously by distinguishing the 
dimension of G. First we handle the one and two-dimensional cases, then the 
homogeneous case and we finish with the three and higher dimensional cases. 

Before doing so, we prove the easy direction of theoreml . l . 

L e m m a 1.4 If Qi ~ Q2, then fii and Q2 are biholomorphic. 
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P r o o f : Assume (1.1). Let \I> = ( ^ i , ^ 2 ) be the biholomorphic map of C2 
defined by 

V2(w, ±w + p(z) 

lV2(w,z) = g(z) 

Then (A1) = n2. 

R e m a r k 1.5 In what follows we will often make a global coordinate change in 
C2 like (*), which is coherent with the equivalence of the defining polynomials. 
In the following, we take the notation from above. 

2 The one-dimensional case 

Let \£ : Qi —• Q2 be a biholomorphic map. For a subgroup N C G2 let ^*(N) 
be the group o ] V o $ C G\. 

L e m m a 2.1 Assume that ^f*(J2) — J\. Then Q\ ~ Q2. 

P r o o f : From our hypothesis it follows that there is a non-zero real number p 
such that 

0 ^ 0 $ = TpU (TAw, z) = (w + it, *)), 

since \I>* is a continuous group isomorphism of two copies of R. 

So we get with * = ( # 1 , # 2 ) 

*i(tu, z) + it = ty^w + ipt, z) 

V2(w,z) = ^2{w + ipt,z) 

which implies : 

* i K * ) -^w + p{z) 

^2{w,z) 9(*) 

with p G 0 ( C ) and g £ A u t o ( C ) , since the projection n : C2 —> C , (w, z) \-> z 
is surjective on Qi and Q2-

Therefore ^ is a biholomorphic map of C2 which maps Qi to Q2 and so we 
have 

iîl {Rew + Qx(z,z) < 0} = y-l{VL2) 

{Re(-w+p(z)) + Q2{g{z),g{z)) < 0} 

{Rew + pRep{z) + pQ2(g(z),g(z)) < 0} . 
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It follows tha t 

Qi(z,z) = pRep(z) + pQ2(g(z),g(z)). 

This equality implies the positivity of p and the fact that the holomorphic 
function p(z) is already a polynomial. Hence Qi ~ Q2. • 

We mention the following direct consequence, which is the statement of 
theorem 1.2 in the case d i m R G i = 1-

Corol lary 2.2 / / d i n i R G i = 1, then Qi and Q2 are equivalent. 

P r o o f : Here we have G\ = J\ and G2 = J2, hence ty*(J2) = J\. 

3 The two-dimensional case 

We are going to handle this case in a sequence of lemmas. We always assume 
that there is a two-dimensional subgroup H C G such that J C H. Since J C G 
is a closed subgroup isomorphic to R there are two possibilities for H : 

i) H is abelian and non-compact. 

ii) H is the solvable two dimensional non-abelian Lie group. 

L e m m a 3.1 Suppose that H is abelian. Then Q ~ P\ or Q ~ P2, where 
P1(^ , j ) = Pi(Rez) is an element of M which depends only on Rez, or 
P2(z,z) = P2(\z\2) is an element of M which depends only on \z\2. 

In the first case, the domain {Rew + Pi (Rez) < 0} realizes the domain Q 
as a tube domain. 

P r o o f : Let L = {af = (<rf, cr|) | t € R } be a one parameter group of H such 
that L and J generate H. The group H being abelian implies tha t L and J 
commute and so we get for all s, tf G R : 

aì (w + ¿ 5 , z) CF\(W, z) + is 

cr\(w + ¿ 5 , z) a{(w,z). 

The restriction of the projection TT : (w, z) —> z from C2 to Q being surjective 
and the second equality imply that 

at2(w,z) = at2(z) 
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