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COMPLEX DYNAMICS IN HIGHER DIMENSION. I. 
John Erik FORNAESS k Nessim SIBONY 

1. Introduction 

Given a polynomial equation P(x) - + a0 = 0- + a0 + a0 = 0, in one variable, x 
one asks what are the solutions. The mam advantage of the complex number 
system is that if x is allowed to be complex then the solutions always exist. 
However, to find the actual values of the solutions is impossible. One can only 
find approximate solutions. 

A traditional method is Newton's method. One starts with a value xn and 
finds inductively a sequence {#??.} 1 #n + l = *n - P ( * n ) 

P(*n) If XQ is near a simple 
root, this sequence converges to this root. 

Shroder fSc] was the first to study Newton's method for complex numbers. 
He was led to the study of iteration of the rational function R(z)=z- + a0 

P(z) 
P'{z) 

Mainly he studied the local behavior of rational functions near attractive 
fixed points, R(zo) = 2 0 , I ff(zo) |< 1. He actually studied general ratio-. 
nal functions rather than the special ones from Newton's method, because 
he discovered tha t Newton's could be replaced by infinitely many rational 
functions. 

If instead one considers polynomial equation in two (or more) variables, 
P(z,y) = Q{*,y) = o, where - + a0 = 0- + a0 — S ft?i,m^ y i one is likewise led to 
study iteration of rational fonctions in two or more variables. In this case 
Newton's method takes the inductive form 

- + a0 = 0- + a0 = 0- + a0 = 0 

where the rational map R is given by 

R(x,y) = (x,y) -
1 

PxQy PyQx 
( P Q y - Q P y , Q P * - P Q x ) . a 0 = 

As in one variable there is an infinite family of other rational maps that could 
be used as well. The simplest one is R(x,y) = ( x , y ) - A ( P , Q ) x c v j where A is 

S. M. F. 
Astérisque 222** (1994) 201 



/. R FORNAESS, N. SIBONY 

a constant matr ix equal to the inverse of the Jacobian matr ix of (P,QY at 
some point close to a fixed point. 

More precisely consider the mapping in C~ given by 

(P,Q) = - x - (х - 2?/)-, -у - X2 . 

Obviously (0,0) is a root of the system P = 0, Q = 0. If we apply the Schroder 

method to this system with A = df df we get in homogeneous coordinate 

the mapping f[x : y : t] =(z-2w)(z-2w)(z-2w)gg which is a holomorphic map 
in P . For any invertible matr ix B the map g = I - B ( P , Q ) q s in homogeneous 
coordinates is a holomorphic map of P - \ 

The analogue of Schroder's study indicated above is the local study of R 
around at tract ive fixed points. This was studied extensively in dimension 2, 
start ing by Leau [Le] in the end of the last century and carried through by 
Lattes [La] and Fatou [Fa]. 

As far as the global study of iteration is concerned, that is, if we start with a 
value Xo, perhaps far from the roots of the polynomial, does Newton's method 
still converge? Schroder was able to decide this only for quadratic polynomials. 
In this case he found that there is a circle in the sphere, C U {oc} = P 1 , 
dividing i t into two open sets. Each of these open sets contains one of the two 
roots and each starting point x 0 in these open sets give a sequence { x n } by 
Newton's method converging to the root in the same open set. 

The global study of iteration in one variable only became possible in the 
second decade of this century after the introduction by Montel of normal 
families, in particular the normality of the family of holomorphic maps from 
the unit disc to the sphere P 1 minus three points is crucial. 

The analogue of this in higher dimensions was unavailable at Fatou's t ime, 
so essentially all the study of iteration of rational maps was local. 

In this paper we will discuss mainly global questions of iteration of rational 
maps in higher dimension. The analogue of Montel's Theorem comes from the 
Kobayashi hyperbolicity of the complement of certain complex hypersurfaces 
in P * \ the complex projective space of dimension k. 

We star t , here, with some basic facts on holomorphic endomorphisms of P f c 

(i.e. holomorphic maps) . For simplicity we sometimes restrict our attention 
to P 2 . In a forthcoming paper we will study the structure of Julia 's and Fatou 
components. 

In section 2 we discuss some basic properties of holomorphic and meromor-
phic maps on Pfc. 

Section 3 is an estimate of the number of periodic points, counted without 
multiplicity. 
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Then in section 4 we give a description of the family of exceptional maps. 
This family generalizes the map z —> zd on P 1 which is characterized by the 
property tha t the points {0, 00} are totally invariant. 

In section 5 we discuss the Kobayashi hyperbolicity of the complement of 
part of the critical orbit. We show that this holds for a Zariski dense set of 
maps. See Theorem 5.3 for a precise statement. 

In section 6 we consider expansive properties of the map in the complement 
of the closure of the critical orbit under suitable hyperbolicity assumption and 
finally, in section 7, we classify critically finite maps in P 2 . 

2. Holomorphic maps, Fatou and Julia sets. 

We first describe the holomorphic maps from Pk to Pk. 

T H E O R E M 2 . 1 . Letf he a non constant holomorphic map fromPk toPk. 
Thenf is given in homogeneous coordinates b y [ / 0 : /1 : • • • : /&] where eachfj 
is a homogeneous polynomial of degreed and thefj have no common zero 
except the origin. 

Proof. Let [z0 : zi : ••• : zk] he homogeneous coordinates in (z-2w) We 
can assume tha t the image of / is not contained in any ( Z j = 0) (otherwise 
rotate coordinates). By the Weierstrass-Hurwitz Theorem [Gu] it follows tha t 
each of the meromorphic functions -0 o / is a quotient of two homogeneous 

polynomials (z-2w) of the same degree. 

Let F denote the map [Fo : ••• : Fk] where the (z-2w) are homogeneous 
polynomials of the same degree obtained by dividing out common factors 
from the polynomials Gj • UGe. We will show that F is a lifting of / to C f c + 1 . 

For this we only need to show that the (z-2w) have no common zeros except the 
origin. Suppose to the contrary that p e c * + 1 1 (0) is a common zero. Choose 
a local lifting (z-2w)(z-2fddfsw)df of / in a neighborhood of p. We may assume 
tha t one of the fi = 1. Say /o = l . Then it follows that (z-2w)sds and that 
Fob) = 0. But this implies that the common zero set of the (z-2w) is a complex 
hypersurface, which implies that they have a common factor, contradicting 
that we have already divided out all common factors. 

Let H denote the space of non constant holomorphic maps on (z-2w) and 
(z-2w) the holomorphic maps given by homogeneous polynomials of degree d. 
Observe tha t (z-2w) is stable under composition. 

On the other hand there are the (not necessarily everywhere well defined) 
maps of degree d from P f c to P f c , which are given in homogeneous coordinates 
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by [fo ' fi • • • • fk]i but now the degree d homogeneous polynomials fi are 
allowed to have common zeros. This later space is easily identified with pN 
where N = (k + 1) (d+k)\ 

d\k\ 
- 1. 

We will also consider the space m(z-2w) of meromorphic maps, consisting of 
those [fo-'-' fk] in pN which have maximal rank on some nonempty open 
set. 

It follows from Bezout's theorem that for / in (z-2w) the number of points in 
(z-2w) is dk counting multiplicity. Consequently (z-2w) is of maximal rank and 
hence (z-2w)(z-2w)dfgd 

In analogy with one complex variable we define the Fatou set and Julia 
sets of a holomorphic map / in Jid. More precisely we have the following 
definition. 

DEFINITION 2.2. Given £ . pk ^ pk in nd. o < e < k -1, a point (z-2w) 
belongs to the Fatou set (z-2w) if there exists a neighborhood U(p) such that for 
every q e U(p) there exists a complex variety A', through q of codimension (z-
and i / n \xA is equicontinuous. 

Observe that ?0 is the largest open set where { / " } is equicontinuous. We 
call ^0 the Fatou set. Also observe that each Tr is open and f o C f i C - C g 
^fc-i-

Correspondingly, let Jt = P k \ T e . ( z - 2 w ) We call JQ the Julia set. 

THEOREM 2.3. The Julia set of a holomorphic map iriHd, d>2, is always 
non empty. 

Proof. Assume (z-2w)df Let h be the limit of a subsequence {fnk}- Then 
h is a non constant holomorphic map of finite degree. As in one variable this 
contradicts that the degrees of fllk are unbounded, see [Mil. 

THEOREM 2.4. The setsHd andMd are Zariski open sets ofPN. In par-
ticularHd andMd are connected. iff e nd. then the critical set off is an 
algebraic variety of degree (k +1)(<1-I). 

Proof. Consider (z-2w) the analytic set in pN(z-2w)df defined by the equation 
f(z) = 0. BS! m(z-2w) be the projection of (z-2w) i n P A . Then (z-2w) is equal to PN\Hd(z-. 
Since the projection is proper, by Tarski Theorem, we get that (z-2w) is an 
analytic set. The fact that M,, is Zariski open follows from the equation 
PN\Md =(z-2w) (z-2w)(z-2w)dfdfg = 0}(z-2w) where (z-2w) is the Jacobian of the lifted 
map on (z-2w) 

Let / = [/o : /1 : • • • : fk] e nd. Then the critical set of / is the projection 
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