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FIXED POINT THEORY AND 
TRACE FOR BICATEGORIES 

Kate PONTO 

Abstract. — The Lefschetz fixed point theorem follows easily from the identification of 
the Lefschetz number with the fixed point index. This identification is a consequence 
of the functoriality of the trace in symmetric monoidal categories. 

There are refinements of the Lefschetz number and the fixed point index that give 
a converse to the Lefschetz fixed point theorem. An important part of this theorem 
is the identification of these different invariants. 

We define a generalization of the trace in symmetric monoidal categories to a trace 
in bicategories with shadows. We show the invariants used in the converse of the 
Lefschetz fixed point theorem are examples of this trace and that the functoriality of 
the trace provides some of the necessary identifications. The methods used here do 
not use simplicial techniques and so generalize readily to other contexts. 

Résumé (Théorie du point fixe et trace pour les bicatégories). — Le théorème du point 
fixe de Lefschetz découle facilement de l'identification du nombre de Lefschetz avec 
l'indice de point fixe. Cette identification est une conséquence de la fonctorialité de 
la trace dans les catégories symétriques monoïdales. 

Ce sont des raffinements du nombre de Lefschetz et de l'indice de point fixe qui 
fournissent la réciproque du théorème du point fixe de Lefschetz. Une partie impor
tante de ce théorème est l'identification de ces invariants. 

Nous définissons une généralisation de la trace dans les catégories symétriques 
monoïdales, en une trace dans les bicatégories avec ombres. Nous montrons que les 
invariants utilisés dans la réciproque du théorème du point fixe de Lefschetz sont des 
exemples de cette trace, et que la fonctorialité de la trace fournit certaines identifica
tions nécessaires. Les méthodes présentées ici n'utilisent pas de technique simpliciale 
et peuvent donc être généralisées facilement dans d'autres contextes. 
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INTRODUCTION 

There are many approaches to determining when a continuous endomorphism of 
a topological space has a fixed point. One of the simplest is given by the Lefschetz 
fixed point theorem. 

Theorem A (Lefschetz fixed point theorem). — Let M be a compact ENR and f: M —> 
M be a continuous map. If f has no fixed points then the Lefschetz number of f is 
zero. 

The Lefschetz number of a map is defined using rational homology and so is rela
tively easy to compute. Further, if M is a simply connected closed smooth manifold 
of dimension at least three then a converse to the Lefschetz fixed point theorem also 
holds. 

Theorem B. — Let f': M —> M be a continuous map of a simply connected closed 
smooth manifold of dimension at least three. Then the Lefschetz number of f is zero 
if and only if f is homotopic to a map with no fixed points. 

Note that we have replaced 'the map / has no fixed points' with 'the map / is 
homotopic to a map with no fixed points'. This change only reflects the fact that 
the Lefschetz number is defined using homology and so cannot distinguish between 
homotopic maps. In particular, the Lefschetz number cannot determine if a map has 
no fixed points, it can only determine if it is homotopic to a map with no fixed points. 

Unfortunately, Theorem B does not hold if we remove the hypothesis that the space 
is simply connected. However, by sacrificing some of the computability we can refine 
the Lefschetz number to an invariant, called the Nielsen number, that detects if the 
map has fixed points. 

Theorem C. — Let f: M —• M be a continuous map of a closed smooth manifold of 
dimension at least three. The Nielsen number of f, N(f), is the minimum number of 
fixed points among all maps homotopic to f. In particular, N(f) is zero if and only 
if f is homotopic to a map with no fixed points. 

The idea behind the Nielsen number is to incorporate information about the fun
damental group into the invariant itself. This additional information corresponds to 
recording which fixed points can be eliminated by a homotopy of the original map. 
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viii INTRODUCTION 

The Nielsen number is not the most convenient description of this information for 
defining generalizations of this invariant to other categories and for proving results 
about relationships between the Nielsen number and basic topological constructions 
such as cofiber sequences or products. The invariant that retains the necessary infor
mation is called the Reidemeister trace. This invariant was defined by Wecken and 
Reidemeister in [40, 45]. It can be used to prove a theorem similar to Theorem C. 

Theorem D. — Let f': M —> M be a continuous map of a closed smooth manifold 
of dimension at least three. The Reidemeister trace of f is zero if and only if f is 
homotopic to a map with no fixed points. 

Classically, all four of these results were proved using simplicial techniques. In 
[11], Dold and Puppe proposed an alternative approach. Their idea was to focus on 
the identification of the Lefschetz number, which is a global invariant, with a local 
invariant, the fixed point index. It is immediate from the definition that the fixed 
point index is zero for a map that has no fixed points or is homotopic to a map 
with no fixed points. Using this observation, the Lefschetz fixed point theorem is a 
consequence of the identification of the Lefschetz number with the index. 

Dold and Puppe approached this identification by defining a more general con
struction that includes both of these invariants as special cases. Their construction 
is a 'trace' in any symmetric monoidal category. In some cases the trace is functo-
rial. Dold and Puppe showed that the identification of the Lefschetz number with the 
index is an example of this functoriality. 

In addition to giving an alternate proof of the Lefschetz fixed point theorem, Dold 
and Puppe's definition of trace can be used to describe generalizations of the fixed 
point index to other categories. If / : X —> X and p: X —> B are continuous maps 
such that p o / = p we say that / is a fiberwise map. In [8], Dold defined an index 
for fiberwise maps and showed that the index is zero for a map that is fiberwise 
homotopic to a map with no fixed points. The fiberwise index is an example of the 
trace in symmetric monoidal categories. 

It is possible to prove results for the trace in symmetric monoidal categories that 
can be applied to the special cases of the Lefschetz number and the index. For example, 
the Lefschetz number and the index are both additive on cofiber sequences. This 
follows from the additivity of the trace in (some) symmetric monoidal categories, 
see [32]. 

Unfortunately, the trace in symmetric monoidal categories cannot be used to de
scribe the invariants of Theorems C and D. Invariants that include information about 
the fundamental group do not fit into a symmetric monoidal category. However, by 
replacing symmetric monoidal categories by appropriate bicategories and similarly 
modifying the definition of the trace we can accommodate these invariants. 

Here we implement this philosophy. First we show that the Reidemeister trace is 
an example of a more general trace. This trace is defined here and is a trace in bicat
egories with some additional structure; these bicategories are called bicategories with 
shadows. Just as the Lefschetz number can be identified with the fixed point index, 
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INTRODUCTION ix 

there is more than one description of the Reidemeister trace. There are generalizations 
of the fixed point index, defined by Reidemeister and Wecken, and of the Lefschetz 
number, defined by Husseini in [19]. Both of these invariants are examples of the trace 
in bicategories with shadows, and the functoriality of the trace can be used to identify 
them. There is also an invariant defined by Klein and Williams in [25] that can be 
identified with another example of the trace in a bicategory with shadows. 

Next we show that this change in perspective gives definitions and proofs that 
generalize more easily than the classical approaches. One element of the classical 
invariants that causes problems for equivariant and fiberwise generalizations is the 
role played by a base point. Both classical definitions of the Reidemeister trace require 
that a base point be chosen, but a different choice of the base point does not change 
the invariant. Modified forms of the Reidemeister trace can be defined without a base 
point. We show that these invariants are also examples of trace in bicategories, and 
we use the formal structure of the trace to show that these unbased invariants can be 
identified with the classical invariants. 

The second source of problems for generalizations is only obvious when trying to 
prove a converse to the Lefschetz fixed point theorem like Theorem D. In [41], Scofield 
defined a generalization of the Nielsen number to fiberwise maps and gave an example 
that showed this invariant does not give a converse to the fiberwise Lefschetz fixed 
point theorem. More recently, Klein and Williams have defined a fiberwise invariant 
that does give a converse to the fiberwise Lefschetz fixed point theorem. 

Theorem E. — Let M —> B be a fiber bundle with closed smooth manifold fibers F 
such that dim(F) — 3 > dim(I?). A fiberwise map f': M —• M is fiberwise homotopic 
to a map with no fixed points if and only if the fiberwise Reidemeister trace of f is 
zero. 

There is another invariant, defined by Crabb and James in [6], that can help to 
explain the discrepancy between Scofield's invariant and Klein and Williams' invari
ant. The invariant defined by Crabb and James is a derived form of the Reidemeister 
trace and so in the transition from a classical invariant to a fiberwise invariant it is 
sensitive to information that the other forms of the Reidemeister trace, like Scofield's 
invariant, miss. Crabb and James' invariant can be identified with the invariant de
fined by Klein and Williams. Crabb and James' invariant, in both its classical and 
fiberwise forms, is an example of the trace in bicategories with shadows. 

More concretely, our goal is to convert Dold and Puppe's outline for proving The
orem A into an approach for proving Theorems D and E. Dold and Puppe's proof 
identified the Lefschetz number and the fixed point index and then used the observa
tion that the index is zero for maps with no fixed points. Our first step is the same. 
We start by identifying the form of the Reidemeister trace defined by Husseini with 
Reidemeister and Wecken's form of the Reidemeister trace. Unfortunately, it is not 
obvious that Reidemeister and Wecken's form of the Reidemeister trace is zero only 
when the map is homotopic to a map with no fixed points. The next step in our proof 
is to identify Reidemeister and Wecken's form of the Reidemeister trace with Crabb 
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