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CARTAN SUBALGEBRAS
OF AMALGAMATED FREE PRODUCT II; FACTORS

BY ADRIAN IOANA
WITH AN APPENDIX BY ADRIAN IOANA AND STEFAAN VAES

Dedicated to Sorin Popa

ABSTRACT. — We study Cartan subalgebras in the context of amalgamated free product II; factors
and obtain several uniqueness and non-existence results. We prove that if I" belongs to a large class of
amalgamated free product groups (which contains the free product of any two infinite groups) then
any II; factor L°°(X) x I arising from a free ergodic probability measure preserving action of I" has
a unique Cartan subalgebra, up to unitary conjugacy. We also prove that if ® = R; * Ra is the
free product of any two non-hyperfinite countable ergodic probability measure preserving equivalence
relations, then the IT; factor L(&) has a unique Cartan subalgebra, up to unitary conjugacy. Finally,
we show that the free product M = M; * M of any two II; factors does not have a Cartan subalgebra.
More generally, we prove that if A C M is a diffuse amenable von Neumann subalgebra and P C M
denotes the algebra generated by its normalizer, then either P is amenable, or a corner of P can be
unitarily conjugate into M7 or M.

REsuME. — Nous étudions les sous-algebres de Cartan dans le contexte du produit amalgamé de
facteurs de type I1; et nous obtenons plusieurs résultats d’unicité et de non-existence. Nous démontrons
que, si I appartient a une grande classe de produits amalgamés de groupes (qui contient le produit libre
de deux groupes infinis), alors tout facteur de type II; associ¢ a une action libre ergodique de I" a une
sous-algebre de Cartan unique, & conjugaison unitaire. Nous démontrons aussi que, si £ = #1 * R est
le produit libre de toute relation d’équivalence ergodique non-hyperfinie dénombrable, alors le facteur
de type II; L(R) a une sous-algébre de Cartan unique, & conjugaison unitaire. Enfin, nous démontrons
que le produit libre M = M; x M de tout facteur de type I1; n’a pas de sous-algebre de Cartan. Plus
généralement, nous démontrons que, si A C M est une sous-algébre de von Neumann amenable et non-
atomique et si P C M désigne I’algebre engendrée par son normalisateur, alors soit P est amenable,
soit un coin de P peut étre unitairement conjugué dans M; ou Mo.

Supported by NSF Grant DMS #1161047, NSF Career Grant DMS #1253402, and a Sloan Foundation
Fellowship.
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72 A. IOANA

1. Introduction

A Cartan subalgebra of a 11; factor M is a maximal abelian von Neumann subalgebra A
whose normalizer generates M. The study of Cartan subalgebras plays a central role in
the classification of II; factors arising from probability measure preserving (pmp) actions.
IfT" ~ (X, ) is a free ergodic pmp action of a countable group T', then the group measure
space 11; factor L>®(X) x T [38] contains L>°(X) as a Cartan subalgebra. In order to
classify L*°(X) x I' in terms of the action I' ~ X, one would ideally aim to show that
L°°(X) is its unique Cartan subalgebra (up to conjugation by an automorphism). Proving
that certain classes of group measure space II; factors have a unique Cartan subalgebra is
useful because it reduces their classification, up to isomorphism, to the classification of the
corresponding actions, up to orbit equivalence. Indeed, following [58, 15], two free ergodic
pmpactionsI" ~ X and A ~ Y are orbit equivalent if and only if there exists an isomorphism
0:L®(X)xT'— L*(Y) x A such that (L (X)) = L*=(Y).

In the case of II; factors coming from actions of amenable groups, both the classifica-
tion and uniqueness of Cartan problems have been completely settled since the early 1980’.
A celebrated theorem of A. Connes [67] asserts that all II; factors arising from free ergodic
pmp actions of infinite amenable groups are isomorphic to the hyperfinite I1; factor, R. Addi-
tionally, [13] shows that any two Cartan subalgebras of R are conjugate by an automorphism
of R.

For a long time, however, the questions of classification and uniqueness of Cartan sub-
algebras for II; factors associated with actions of non-amenable groups, were considered
intractable. During the last decade, S. Popa’s deformation/rigidity theory has led to spec-
tacular progress in the classification of group measure space II; factors (see the surveys
[49, 62, 30]). This was in part made possible by several results providing classes of group
measure space II; factors that have a unique Cartan subalgebra, up to unitary conjugacy.
The first such classes were obtained by N. Ozawa and S. Popa in their breakthrough work
[41, 42]. They showed that II; factors L>°(X) x I' associated with free ergodic profinite
actions of free groups I' = IF,, and their direct products I' = F,,, x F,,, x --- x F,,, have
a unique Cartan subalgebra, up to unitary conjugacy. Recently, this result has been ex-
tended to profinite actions of hyperbolic groups [10] and of direct products of hyperbolic
groups [11]. The proofs of these results rely both on the fact that free groups (and, more
generally, hyperbolic groups, see [39, 40]) are weakly amenable and that the actions are
profinite.

In a very recent breakthrough, S. Popa and S. Vaes succeeded in removing the profinite-
ness assumption on the action and obtained wide-ranging unique Cartan subalgebra results.
They proved that if T is either a weakly amenable group with ,6’%2) (I") > 0[55] or a hyperbolic
group [56] (or a direct product of groups in one of these classes), then I1; factors L= (X) x T
arising from arbitrary free ergodic pmp actions of I" have a unique Cartan subalgebra, up to
unitary conjugacy. Following [55, Definition 1.4], such groups I', whose every action gives
rise to a II; factor with a unique Cartan subalgebra, are called G-rigid (Cartan rigid).

In this paper we study Cartan subalgebras of tracial amalgamated free product von
Neumann algebras M = M; xg M (see [46, 66] for the definition). Our methods are best
suited to the case when M = L°°(X) x I' comes from an action of an amalgamated free
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product group I' = T’y *, I's. In this context, by imposing that the inclusion A < T satisfies
a weak malnormality condition [53], we prove that L®°(X) is the unique Cartan subalgebra
of M, up to unitary conjugacy, for any free ergodic pmp actionI" ~ X.

THEOREM 1.1. — Let T' = T'; xp I's be an amalgamated free product group such
that [T1:A] > 2 and [Ts: A] > 3. Assume that there exist g1,92,...,9n € ' such that
Ny giAgi_1 is finite. Let T' ~ (X, u) be any free ergodic pmp action of T on a standard
probability space (X, p).

Then the I, factor M = L*(X) x I has a unique Cartan subalgebra, up to unitary
conjugacy.

Moreover, the same holds if T is replaced with a direct product of finitely many such groupsT.

This result provides the first examples of &-rigid groups I' that are not weakly amenable
(take e.g.,T' = SL3(Z) = X, where X is any non-trivial countable group).

Theorem 1.1 generalizes and strengthens the main result of [53]. Indeed, in the above
setting, assume further that A is amenable and that I'; contains either a non-amenable
subgroup with the relative property (T) or two non-amenable commuting subgroups. [53,
Theorem 1.1] then asserts that M has a unique group measure space Cartan subalgebra.

Theorem 1.1 provides strong supporting evidence for a general conjecture which predicts
that any group I" with positive first £2-Betti number, ﬂf) (T') > 0, is G-rigid. Thus, it implies
that the free product I' = T'; * I'y of any two countable groups satisfying |T'y| > 2 and
|T2| > 3, is G-rigid.

Recently, there have been several results offering positive evidence for this conjecture.
Firstly, it was shown in [53] that if ' = Ty x 'y, where I'y is a property (T) group and
I'; is a non-trivial group, then any II; factor L*°(X) x I associated with a free ergodic
pmp action of I has a unique group measure space Cartan subalgebra, up to unitary con-
jugacy (see also [16, 24]). Secondly, the same has been proven in [9] under the assumption
that 5§2) (I") > 0 and I" admits a non-amenable subgroup with the relative property (T). For a
common generalization of the last two results, see [63]. Thirdly, we proved that if ﬂf) (T >0,
then L*°(X) x I" has a unique group measure space Cartan subalgebra whenever the action
I' ~ (X, p) is either rigid [29] or compact [28]. As already mentioned above, the conjecture
has been very recently established in full generality for weakly amenable groups I'" with

& (T) > 0in [55].

As a consequence of Theorem 1.1 we obtain a new family of W*-superrigid actions.
Recall that a free ergodic pmp action I' ~ (X, u) is called W*-superrigid if whenever
L*(X) xT'2 L>®(Y) x A, for some free ergodic pmp action A ~ (Y, v), the groups I" and
A are isomorphic, and their actions are conjugate. The existence of virtually W*-superrigid
actions was proven in [43]. The first concrete families of W*-superrigid actions were found
in [53] where it was shown for instance that Bernoulli actions of many amalgamated free
product groups have this property. In [27] we proved that Bernoulli actions of icc property
(T) groups are W*-superrigid. By combining Theorem 1.1 with the cocycle superrigidity
theorem [51] we derive the following.
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