quatrième série - tome 48

fascicule 1 janvier-février 2015

ANNALES SCIENTIFIQUES de L'ÉCOLE NORMALE SUPÉRIEURE

Adrian IOANA

Cartan subalgebras of amalgamated free product II_1 factors With an appendix by Adrian IOANA and Stefaan VAES

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Annales Scientifiques de l'École Normale Supérieure

Publiées avec le concours du Centre National de la Recherche Scientifique

Responsable du comité de rédaction / Editor-in-chief

Antoine CHAMBERT-LOIR

Publication fondée en 1864 par Louis Pasteur

Continuée de 1872 à 1882 par H. SAINTE-CLAIRE DEVILLE

de 1883 à 1888 par H. Debray de 1889 à 1900 par C. Hermite de 1901 à 1917 par G. Darboux de 1918 à 1941 par É. Picard de 1942 à 1967 par P. Montel

Comité de rédaction au 1 er janvier 2015

N. Anantharaman B. Kleiner

E. Breuillard E. Kowalski R. Cerf P. Le Calvez

A. Chambert-Loir M. Mustață

I. Gallagher L. Saloff-Coste

Rédaction / Editor

Annales Scientifiques de l'École Normale Supérieure, 45, rue d'Ulm, 75230 Paris Cedex 05, France.

Tél.: (33) 1 44 32 20 88. Fax: (33) 1 44 32 20 80.

annales@ens.fr

Édition / Publication

Société Mathématique de France Institut Henri Poincaré 11, rue Pierre et Marie Curie 75231 Paris Cedex 05

> Tél.: (33) 01 44 27 67 99 Fax: (33) 01 40 46 90 96

ISSN 0012-9593

Abonnements / Subscriptions

Maison de la SMF Case 916 - Luminy 13288 Marseille Cedex 09 Fax: (33) 04 91 41 17 51

email:smf@smf.univ-mrs.fr

Tarifs

Europe : 515 €. Hors Europe : 545 €. Vente au numéro : 77 €.

© 2015 Société Mathématique de France, Paris

En application de la loi du 1^{er} juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l'autorisation de l'éditeur ou du Centre français d'exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).

All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

Directeur de la publication : Marc Peigné

Périodicité : 6 nos / an

CARTAN SUBALGEBRAS OF AMALGAMATED FREE PRODUCT II₁ FACTORS

BY ADRIAN IOANA WITH AN APPENDIX BY ADRIAN IOANA AND STEFAAN VAES

Dedicated to Sorin Popa

ABSTRACT. — We study Cartan subalgebras in the context of amalgamated free product II_1 factors and obtain several uniqueness and non-existence results. We prove that if Γ belongs to a large class of amalgamated free product groups (which contains the free product of any two infinite groups) then any II_1 factor $L^\infty(X) \rtimes \Gamma$ arising from a free ergodic probability measure preserving action of Γ has a unique Cartan subalgebra, up to unitary conjugacy. We also prove that if $\mathcal{R}=\mathcal{R}_1*\mathcal{R}_2$ is the free product of any two non-hyperfinite countable ergodic probability measure preserving equivalence relations, then the II_1 factor $L(\mathcal{R})$ has a unique Cartan subalgebra, up to unitary conjugacy. Finally, we show that the free product $M=M_1*M_2$ of any two II_1 factors does not have a Cartan subalgebra. More generally, we prove that if $A \subset M$ is a diffuse amenable von Neumann subalgebra and $P \subset M$ denotes the algebra generated by its normalizer, then either P is amenable, or a corner of P can be unitarily conjugate into M_1 or M_2 .

Résumé. — Nous étudions les sous-algèbres de Cartan dans le contexte du produit amalgamé de facteurs de type II_1 et nous obtenons plusieurs résultats d'unicité et de non-existence. Nous démontrons que, si Γ appartient à une grande classe de produits amalgamés de groupes (qui contient le produit libre de deux groupes infinis), alors tout facteur de type II_1 associé à une action libre ergodique de Γ a une sous-algèbre de Cartan unique, à conjugaison unitaire. Nous démontrons aussi que, si $\mathcal{R}=\mathcal{R}_1*\mathcal{R}_2$ est le produit libre de toute relation d'équivalence ergodique non-hyperfinie dénombrable, alors le facteur de type II_1 $L(\mathcal{R})$ a une sous-algèbre de Cartan unique, à conjugaison unitaire. Enfin, nous démontrons que le produit libre $M=M_1*M_2$ de tout facteur de type II_1 n'a pas de sous-algèbre de Cartan. Plus généralement, nous démontrons que, si $A\subset M$ est une sous-algèbre de von Neumann amenable et nonatomique et si $P\subset M$ désigne l'algèbre engendrée par son normalisateur, alors soit P est amenable, soit un coin de P peut être unitairement conjugué dans M_1 ou M_2 .

Supported by NSF Grant DMS #1161047, NSF Career Grant DMS #1253402, and a Sloan Foundation Fellowship.

72 A. IOANA

1. Introduction

A Cartan subalgebra of a Π_1 factor M is a maximal abelian von Neumann subalgebra A whose normalizer generates M. The study of Cartan subalgebras plays a central role in the classification of Π_1 factors arising from probability measure preserving (pmp) actions. If $\Gamma \curvearrowright (X, \mu)$ is a free ergodic pmp action of a countable group Γ , then the group measure space Π_1 factor $L^\infty(X) \rtimes \Gamma$ [38] contains $L^\infty(X)$ as a Cartan subalgebra. In order to classify $L^\infty(X) \rtimes \Gamma$ in terms of the action $\Gamma \curvearrowright X$, one would ideally aim to show that $L^\infty(X)$ is its unique Cartan subalgebra (up to conjugation by an automorphism). Proving that certain classes of group measure space Π_1 factors have a unique Cartan subalgebra is useful because it reduces their classification, up to isomorphism, to the classification of the corresponding actions, up to orbit equivalence. Indeed, following [58, 15], two free ergodic pmp actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ are orbit equivalent if and only if there exists an isomorphism $\theta: L^\infty(X) \rtimes \Gamma \to L^\infty(Y) \rtimes \Lambda$ such that $\theta(L^\infty(X)) = L^\infty(Y)$.

In the case of II_1 factors coming from actions of amenable groups, both the classification and uniqueness of Cartan problems have been completely settled since the early 1980's. A celebrated theorem of A. Connes [67] asserts that all II_1 factors arising from free ergodic pmp actions of infinite amenable groups are isomorphic to the hyperfinite II_1 factor, R. Additionally, [13] shows that any two Cartan subalgebras of R are conjugate by an automorphism of R.

For a long time, however, the questions of classification and uniqueness of Cartan subalgebras for II_1 factors associated with actions of non-amenable groups, were considered intractable. During the last decade, S. Popa's deformation/rigidity theory has led to spectacular progress in the classification of group measure space II_1 factors (see the surveys [49, 62, 30]). This was in part made possible by several results providing classes of group measure space II_1 factors that have a unique Cartan subalgebra, up to unitary conjugacy. The first such classes were obtained by N. Ozawa and S. Popa in their breakthrough work [41, 42]. They showed that II_1 factors $L^{\infty}(X) \rtimes \Gamma$ associated with free ergodic profinite actions of free groups $\Gamma = \mathbb{F}_n$ and their direct products $\Gamma = \mathbb{F}_{n_1} \times \mathbb{F}_{n_2} \times \cdots \times \mathbb{F}_{n_k}$ have a unique Cartan subalgebra, up to unitary conjugacy. Recently, this result has been extended to profinite actions of hyperbolic groups [10] and of direct products of hyperbolic groups [11]. The proofs of these results rely both on the fact that free groups (and, more generally, hyperbolic groups, see [39, 40]) are weakly amenable and that the actions are profinite.

In a very recent breakthrough, S. Popa and S. Vaes succeeded in removing the profiniteness assumption on the action and obtained wide-ranging unique Cartan subalgebra results. They proved that if Γ is either a weakly amenable group with $\beta_1^{(2)}(\Gamma) > 0$ [55] or a hyperbolic group [56] (or a direct product of groups in one of these classes), then II₁ factors $L^{\infty}(X) \rtimes \Gamma$ arising from *arbitrary* free ergodic pmp actions of Γ have a unique Cartan subalgebra, up to unitary conjugacy. Following [55, Definition 1.4], such groups Γ , whose every action gives rise to a II₁ factor with a unique Cartan subalgebra, are called \mathscr{C} -rigid (Cartan rigid).

In this paper we study Cartan subalgebras of tracial amalgamated free product von Neumann algebras $M = M_1 *_B M_2$ (see [46, 66] for the definition). Our methods are best suited to the case when $M = L^{\infty}(X) \rtimes \Gamma$ comes from an action of an amalgamated free

product group $\Gamma = \Gamma_1 *_{\Lambda} \Gamma_2$. In this context, by imposing that the inclusion $\Lambda < \Gamma$ satisfies a weak malnormality condition [53], we prove that $L^{\infty}(X)$ is the unique Cartan subalgebra of M, up to unitary conjugacy, for *any* free ergodic pmp action $\Gamma \curvearrowright X$.

THEOREM 1.1. – Let $\Gamma = \Gamma_1 *_{\Lambda} \Gamma_2$ be an amalgamated free product group such that $[\Gamma_1 : \Lambda] \geqslant 2$ and $[\Gamma_2 : \Lambda] \geqslant 3$. Assume that there exist $g_1, g_2, \ldots, g_n \in \Gamma$ such that $\bigcap_{i=1}^n g_i \Lambda g_i^{-1}$ is finite. Let $\Gamma \curvearrowright (X, \mu)$ be any free ergodic pmp action of Γ on a standard probability space (X, μ) .

Then the II_1 factor $M = L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

Moreover, the same holds if Γ is replaced with a direct product of finitely many such groups Γ .

This result provides the first examples of \mathscr{C} -rigid groups Γ that are not weakly amenable (take e.g., $\Gamma = SL_3(\mathbb{Z}) * \Sigma$, where Σ is any non-trivial countable group).

Theorem 1.1 generalizes and strengthens the main result of [53]. Indeed, in the above setting, assume further that Λ is amenable and that Γ_2 contains either a non-amenable subgroup with the relative property (T) or two non-amenable commuting subgroups. [53, Theorem 1.1] then asserts that M has a unique group measure space Cartan subalgebra.

Theorem 1.1 provides strong supporting evidence for a general conjecture which predicts that any group Γ with positive first ℓ^2 -Betti number, $\beta_1^{(2)}(\Gamma) > 0$, is $\mathscr C$ -rigid. Thus, it implies that the free product $\Gamma = \Gamma_1 * \Gamma_2$ of any two countable groups satisfying $|\Gamma_1| \geqslant 2$ and $|\Gamma_2| \geqslant 3$, is $\mathscr C$ -rigid.

Recently, there have been several results offering positive evidence for this conjecture. Firstly, it was shown in [53] that if $\Gamma = \Gamma_1 * \Gamma_2$, where Γ_1 is a property (T) group and Γ_2 is a non-trivial group, then any Π_1 factor $L^\infty(X) \rtimes \Gamma$ associated with a free ergodic pmp action of Γ has a unique group measure space Cartan subalgebra, up to unitary conjugacy (see also [16, 24]). Secondly, the same has been proven in [9] under the assumption that $\beta_1^{(2)}(\Gamma) > 0$ and Γ admits a non-amenable subgroup with the relative property (T). For a common generalization of the last two results, see [63]. Thirdly, we proved that if $\beta_1^{(2)}(\Gamma) > 0$, then $L^\infty(X) \rtimes \Gamma$ has a unique group measure space Cartan subalgebra whenever the action $\Gamma \curvearrowright (X,\mu)$ is either rigid [29] or compact [28]. As already mentioned above, the conjecture has been very recently established in full generality for weakly amenable groups Γ with $\beta_1^{(2)}(\Gamma) > 0$ in [55].

As a consequence of Theorem 1.1 we obtain a new family of W*-superrigid actions. Recall that a free ergodic pmp action $\Gamma \curvearrowright (X,\mu)$ is called W*-superrigid if whenever $L^\infty(X) \rtimes \Gamma \cong L^\infty(Y) \rtimes \Lambda$, for some free ergodic pmp action $\Lambda \curvearrowright (Y,\nu)$, the groups Γ and Λ are isomorphic, and their actions are conjugate. The existence of virtually W*-superrigid actions was proven in [43]. The first concrete families of W*-superrigid actions were found in [53] where it was shown for instance that Bernoulli actions of many amalgamated free product groups have this property. In [27] we proved that Bernoulli actions of icc property (T) groups are W*-superrigid. By combining Theorem 1.1 with the cocycle superrigidity theorem [51] we derive the following.