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GEOMETRIZATION OF 3-ORBIFOLDS OF CYCLIC TYPE

Michel Boileau and Joan Porti

with the collaboration of Michael Heusener

Abstract. — We prove the orbifold theorem in the cyclic case: If O is a compact
oriented irreducible atoroidal 3-orbifold whose ramification locus is a non-empty sub-
manifold, then O is geometric, i.e. it has a hyperbolic, a Euclidean or a Seifert fibred
structure. This theorem implies Thurston’s geometrization conjecture for compact
orientable irreducible three-manifolds having a non-free symmetry.

Résumé (Géométrisation des orbi-variétés tridimensionnelles de type cyclique)

Nous démontrons le théoréme des orbi-variétés de Thurston dans le cas cyclique :
une orbi-variété tridimensionelle, compacte, orientable, irréductible, atoroidale et dont
le lieu de ramification est une sous-variété non vide, admet soit une structure hyper-
bolique ou Euclidienne, soit une fibration de Seifert. Ce théoréme implique qu’une
variété tridimensionelle, compacte, irréductible et possédant une symétrie non libre,
vérifie la conjecture de géométrisation de Thurston.
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INTRODUCTION

A 3-dimensional orbifold is a metrizable space with coherent local models given by
quotients of R3 by finite subgroups of O(3). For example, the quotient of a 3-manifold
by a properly discontinuous group action naturally inherits a structure of a 3-orbifold.
When the group action is finite, such an orbifold is said to be very good. For a general
background about orbifolds see [BS1], [BS2], [DaM], [Kap, Chap. 7], [Sc3], [Tak1]
and [Thul, Chap. 13].

The purpose of this monograph is to give a complete proof of Thurston’s orbifold
theorem in the case where all local isotropy groups are cyclic subgroups of SO(3).
Following [DaM], we say that such an orbifold is of cyclic type when in addition
the ramification locus is non-empty. Hence a 3-orbifold O is of cyclic type iff its
ramification locus ¥ is a non-empty 1-dimensional submanifold of the underlying
manifold |@|, which is transverse to the boundary 9|0| = |00|. The first result
presented here is the following version of Thurston’s Orbifold Theorem:

Theorem 1. — Let O be a compact, connected, orientable, irreducible, and O-incom-
pressible 3-orbifold of cyclic type. If O is very good, topologically atoroidal and acylin-
drical, then O is geometric (i.e. O admits either a hyperbolic, a Euclidean, or a Seifert
fibred structure).

Remark. — When 90 is a union of toric 2-suborbifolds, the hypothesis that O is
acylindrical is not needed.

If 00 # @ and O is not I-fibred, then O admits a hyperbolic structure of finite
volume with totally geodesic boundary and cusps.

We only consider smooth orbifolds, so that the local isotropy groups are always
orthogonal. We recall that an orbifold is said to be good if it has a covering which is a
manifold. Moreover if this covering is finite then the orbifold is said to be very good.

A general compact orientable irreducible and atoroidal 3-orbifold (which is not a
priori very good) can be canonically split along a maximal (perhaps empty) collection
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of disjoint and non-parallel hyperbolic turnovers (i.e. a 2-orbifold with underlying
space a 2-sphere and with three branching points) into either small or Haken 3-
suborbifolds.

An orientable compact 3-orbifold O is small if it is irreducible, its boundary 0O
is a (perhaps empty) collection of turnovers, and O does not contain any essential
orientable 2-suborbifold.

Using Theorem 1, we are able to geometrize such small 3-orbifolds, and hence to
show that they are in fact very good.

Theorem2. — Let O be a compact, orientable, connected, small 3-orbifold of cyclic
type. Then O is geometric.

Therefore, to get a complete picture (avoiding the very good hypothesis), it remains
to geometrize the Haken atoroidal pieces.
An orientable compact 3-orbifold O is Haken if:
— O is irreducible,
— every embedded turnover is parallel to the boundary
— and O contains an embedded orientable incompressible 2-suborbifold different
from a turnover.

The geometrization of Haken atoroidal 3-orbifolds relies on the following extension of
Thurston’s hyperbolization theorem (for Haken 3-manifolds):

Theorem 3 (Thurston’s hyperbolization theorem). — Let O be a compact, orientable,
connected, irreducible, Haken 3-orbifold. If O is topologically atoroidal and not Seifert
fibred, nor Euclidean, then O is hyperbolic.

It is a result of W. Dunbar [Dun2] that an orientable Haken 3-orbifold can be
decomposed into either discal 3-orbifolds or thick turnovers (i.e. {turnovers}x|0,1])
by repeated cutting along 2-sided properly embedded essential 2-suborbifolds.

Due to this fact, the proof of Theorem 3 follows exactly the scheme of the proof
for Haken 3-manifolds [Thu2, Thu3, Thu5], [McM1], [Kap], [Ot1, Ot2]. We do
not give a detailed proof of it here, but we only present the main steps to take in
consideration and indicate shortly how to handle them in Chapter 8.

Since hyperbolic turnovers are rigid, Theorem 2 and Theorem 3 imply Thurston’s
orbifold theorem in the cyclic type case:

Thurston’s Orbifold Theorem. — Let O be a compact, connected, orientable, irre-
ducible, 3-orbifold of cyclic type. If O is topologically atoroidal, then O is geometric.

In late 1981, Thurston [Thu2, Thu6] announced the Geometrization theorem
for 3-orbifolds with non-empty ramification set (without the assumption of cyclic
type), and lectured about it. Since 1986, useful notes about Thurston’s proof (by
Soma, Ohshika and Kojima [SOK] and by Hodgson [Hol]) have been circulating.
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In addition, in 1989 much more details appeared in Zhou’s thesis [Zh1, Zh2] in the
cyclic case. However no complete written proof was available (cf. [Kir, Prob. 3.46] ).

Recently we have obtained with B. Leeb a proof of Thurston’s orbifold theorem
in the case where the singular locus has vertices. A complete written version of this
proof can be found in [BLP1, BLP2]. This proof, in particular for orbifolds with all
singular vertices of dihedral type, relies on the proof of the cyclic case presented here.
However the methods used in [BLP2] to study the geometry of cone 3-manifolds are
quite different from the ones used here.

A different proof, more in the spirit of Thurston’s original approach, has been
announced by D. Cooper, C. Hodgson and S. Kerckhoff in [CHK].

In this monograph we work in the category of orbifolds. For the basic definitions
in this category, including map, homotopy, isotopy, covering and fundamental group,
we refer mainly to Chapter 13 of Thurston’s notes [Thul], to the books by Bridson
and Haefliger [BrH] and by Kapovich [Kap], as well as to the articles by Bonahon
and Siebenmann [BS1, BS2], by Davis and Morgan [DaM] and by Takeuchi [Tak1].

In the case of good orbifolds, these notions are defined as the corresponding equiv-
ariant notions in the universal covering, which is a manifold.

According to [BS1, BS2] and [Thul, Ch. 13], we use the following terminology.

Definitions. — We say that a compact 2-orbifold F? is respectively spherical, discal,
toric or annular if it is the quotient by a finite smooth group action of respectively
the 2-sphere S?, the 2-disc D?, the 2-torus 7 or the annulus S* x [0, 1].

A compact 2-orbifold is bad if it is not good. Such a 2-orbifold is the union of two
non-isomorphic discal 2-orbifolds along their boundaries.

A compact 3-orbifold O is irreducible if it does not contain any bad 2-suborbifold
and if every orientable spherical 2-suborbifold bounds in O a discal 3-suborbifold,
where a discal 3-orbifold is a finite quotient of the 3-ball by an orthogonal action.

A connected 2-suborbifold F? in an orientable 3-orbifold O is compressible if either
F? bounds a discal 3-suborbifold in O or there is a discal 2-suborbifold A% which
intersects transversally F2 in A% = A2 N F? and such that A2 does not bound a
discal 2-suborbifold in F2.

A 2-suborbifold F? in an orientable 3-orbifold O is incompressible if no connected
component of F2 is compressible in O. The compact 3-orbifold O is d-incompressible
if 0O is empty or incompressible in O.

A properly embedded 2-suborbifold (F,0F) — (O, 00) is 0-compressible if:

— either (F,0F) is a discal 2-suborbifold (D?,dD?) which is d-parallel,
— or there is a discal 2-suborbifold A C O such that A N F' is a simple arc a,
A NOM is a simple arc 8, with 0A = aU B and aN g = da = Jp

An orientable properly embedded 2-suborbifold F? is 0-parallel if it belongs to the
frontier of a collar neighborhood F2 x [0,1] C O of a boundary component F? C 90.

SOCIETE MATHEMATIQUE DE FRANCE 2001



4 INTRODUCTION

A properly embedded 2-suborbifold F? is essential in a compact orientable irre-
ducible 3-orbifold, if it is incompressible, d-incompressible and not boundary parallel.

A compact 3-orbifold is topologically atoroidal if it does not contain any embedded
essential orientable toric 2-suborbifold. It is topologically acylindrical if every properly
embedded orientable annular 2-suborbifold is boundary parallel.

A turnover is a 2-orbifold with underlying space a 2-sphere and with three branch-
ing points. In an irreducible orientable orbifold an embedded turnover either bounds
a discal 3-suborbifold or is incompressible and of non-positive Euler characteristic.

According to [Thul, Ch. 13], the fundamental group of an orbifold O, denoted by
71(0), is defined as the Deck transformation group of its universal cover.

A Seifert fibration on a 3-orbifold O is a partition of O into closed 1-suborbifolds
(circles or intervals with silvered boundary) called fibres, such that each fibre has
a saturated neighborhood diffeomorphic to S* x D?/G, where G is a finite group
which acts smoothly, preserves both factors, and acts orthogonally on each factor and
effectively on D?; moreover the fibres of the saturated neighborhood correspond to
the quotients of the circles S x {x}. On the boundary 90, the local model of the
Seifert fibration is S* x D% /G, where D7 is a half disc.

A 3-orbifold that admits a Seifert fibration is called Seifert fibred. Every good
Seifert fibred 3-orbifold is geometric (cf. [Sc3], [Thu?]). Seifert fibred 3-orbifolds
have been classified in [BS2].

A compact orientable 3-orbifold O is hyperbolic if its interior is orbifold-diffeo-
morphic to the quotient of the hyperbolic space H? by a non-elementary discrete group
of isometries. In particular I-bundles over hyperbolic 2-orbifolds are hyperbolic, since
their interiors are quotients of H? by non-elementary Fuchsian groups. In Theorem 1,
except for I-bundles, we prove that when O is hyperbolic, if we remove the toric
components of the boundary 0rO C 90, then O — 9rO has a hyperbolic structure
with finite volume and geodesic boundary. This implies the existence of a complete
hyperbolic structure on the interior of O.

We say that a compact orientable 3-orbifold is Fuclidean if its interior has a com-
plete Euclidean structure. Thus, if a compact orientable and O-incompressible 3-
orbifold O is Euclidean, then either O is a I-bundle over a 2-dimensional Euclidean
closed orbifold or O is closed.

We say that a compact orientable 3-orbifold is spherical when it is the quotient
of S* by the orthogonal action of a finite subgroup of SO(4). A spherical orbifold of
cyclic type is always Seifert fibred ([Dunl], [DaM]).

Thurston’s conjecture asserts that the interior of a compact irreducible orientable
3-orbifold can be decomposed along a canonical family of incompressible toric 2-
suborbifolds into geometric 3-suborbifolds.
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