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ANALYTIC THEORY FOR THE QUADRATIC
SCATTERING WAVE FRONT SET AND APPLICATION
TO THE SCHRODINGER EQUATION

Luc Robbiano, Claude Zuily

Abstract. — We consider in this work, the microlocal propagation of analytic singu-
larities for the solutions of the Schrodinger equation with variable coefficients. We
introduce, following R. Melrose and J. Wunsch, a R™ compactification and a cotan-
gent compactification. We define by a FBI transform an analytic wave front set on
this cotangent bundle. The main part of this paper is to prove the propagation of
microlocal analytic singularities in this wave front set.

Résumé (Théorie analytique du front d’ onde de scattering quadratique et application a
I”égquation de Schrédinger)

On examine dans ce travail la propagation des singularités analytiques des so-
lutions de I’équation de Schrodinger & coefficients variables. Nous introduisons, en
suivant R. Melrose et J. Wunsch, une compactification de R™ et une compactification
du cotangent. Nous définissons sur ce cotangent un front d’onde analytique par une
transformation de FBI. La majeure partie de cet article est consacrée a la preuve de
la propagation des singularités analytiques microlocales de ce front d’onde.
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CHAPTER 0

INTRODUCTION

The purpose of this work is to provide a theory for the analytic quadratic scattering
wave front set, here denoted ©°W F,,, which in the C'* case has been introduced by
Wunsch [W1] after the work of Melrose [M1], and to apply it to the propagation of
analytic singularities for the linear Schrédinger equation with variable coefficients.

To understand what we are doing here, let us begin by a very simple example.
Let us consider the initial value problem for the constant coeflicients Schrodinger
equation,

ou

i— +Au=0, t>0, z€R"
(0.1) Yor T rerRt

Ujt=0 = U0

Taking ug = 6 and ug = e’im2, it is an easy exercise to see that a data which is a
distribution with compact support may give rise to a smooth solution (in ) for every
positive ¢, while an analytic data which oscillates at infinity may produce a singular
solution (in x) at some time ¢. This classical fact, which, roughly speaking, asserts
that the smoothness of the solution (in x), for ¢ > 0, is under the control of the
behavior at infinity of the initial data, is known as “propagation with infinite speed”.

It turns out that this fact extends in many directions. It is of microlocal nature,
it can be described geometrically and it holds for non trapping Laplacians which are
flat perturbation (at infinity) of the constant coefficient case.

These extensions have been the subject of many recent works. See Kapitanski-
Safarov [KS], Craig-Kappeler-Strauss [CKS], Craig [C], Shananin [Sh], Robbiano-
Zuily [RZ1, RZ2|, Kajitani-Wakabayashi [KW], Okaji [O], Morimoto-Robbiano-
Zuily [MRZ]. Related works have been done by Doi [D1, D2], Hayashi-Kato [HK],
Hayashi-Saitoh [HS], Kajitani [K], Vasy [V], Vasy-Zworski [VZ] and we refer to the
paper [CKS] for a more complete bibliography.



2 CHAPTER 0. INTRODUCTION

In all these works we are handling two informations : behavior at infinity (decay,
oscillations. ..) and smoothness. In a recent paper, Wunsch [W1] proposed to em-
bed these two informations in one unique object, which he called the C*° quadratic
scattering (gsc) wave front set, in which the above phenomena of infinite speed propa-
gation would appear as a propagation of singularities result. Here the word quadratic
is used to emphasize that this wave front set takes in account the quadratic oscilla-
tions at infinity. Let us note that a scattering wave front set in the C°° case was
already introduced by Melrose [M1, M2]| and that related notions have been recently
considered by Wunsch-Zworski [WZ] (see also Rouleux [R]). Moreover, in the same
paper Wunsch gave a quite complete description of the propagation of singularities
for this C*> wave front set which will be described later one.

It is worthwhile to mention that some propagation results have been obtained a
long time ago by R. Lascar [L] (see also Boutet de Monvel [B]). In the C*° case, he
introduced a parabolic wave front set and he proved its propagation. However this
propagation (in z) holds between two points at the same time ¢ ; it is therefore unable
to link the “singularities” of the data to those of the solution for positive time.

The work of Wunsch relies on some geometrical point of view of Melrose. It be-
gins by working on a compact manifold M with boundary M, which comes from
a (stereographic) compactification of R™. Roughly speaking this corresponds to set,
for large z, = w/p, where p > 0 and w € S"~. The boundary OM corresponds
then to the infinity of R™. The second step is to define a cotangent bundle. The
natural one, coming from the above compactification would be the one where the
canonical one form is given by a = )\z—é’ + u- %y if (p,y) are local coordinates near
the boundary. However, having in mind that this bundle should hold the singularities
of the quadratic oscillatory data, Wunsch introduced the quadratic scattering (gsc)

cotangent bundle, T M where the canonical one form is given by o = /\i—g + - %.
Indeed if up(z) = €472} where A is an n x n symmetric real matrix, we have
ug = e#? A9 and the differential of the phase is

dqu

! = - ww@ " i w,w))—5
d(?mw,m) = —2(Aw, >p3+;awj(<A w5

Local coordinates, near the boundary, in this gsc cotangent bundle are given by
(p,y, A\, ). Now, since only high frequencies are involved in the occurring of singular-
ities, Melrose suggests to make a radial compactification in the fibers, that is to set,

for large A + |,
1 ~ _
o= 7()\2 FRREINVEE A=0o\, n=opu.
Then we may define the extended gsc cotangent bundle asT" M in which local coor-
dinates, near the boundary of M, are given by (p,y, 0, (\, %)), where p > 0, ¢ > 0.
Its boundary C is the union of two faces, ©Tp,, M = {(p,y,0,(\, 7)) : p = 0} and

®S*M ={(p,y,0.(\, i) : 0 = 0}
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CHAPTER 0. INTRODUCTION 3

The gsc wave front set is a subset of C. To define it, in the C°° case, Wunsch uses
Melrose’s theory of pseudo-differential operators on manifolds with corners [M1].
Here, in the analytic case (but also in the C*° or Gevrey cases) we use instead the
Sjostrand machinery of FBI transforms. Our analytic gsc wave front set will be defined
through a FBI transform with two scales (h, k), instead of only one scale A = 1/k in
the usual case. More precisely we shall set for u € L?(M),

(02) Tula,h,k) = / / eI o ) o oy, sy k)X oy Va9 dpdy

Here ¢ is a phase, a a symbol and x a cut-off function. (See § 2 for the precise
definitions of phases, symbols and ®*°W F,).
The simplest phase is the following

P(s,,00h) = (s — ag)ar + (y — ay) - o +ih[(s — os)® + (y — ay)?],

where a = (a5, vy, a7y ) € R x R™™H x R x R™L

Now, if u(t,-) is a solution of (0.1) and ¢y > 0, the ®WF,(u(to,-)) does not
propagate ; instead we introduce a uniform gsc analytic wave front set asCTy R, (u(to,-))
which will propagate.

In (0.2), the parameter h is used to describe the behavior at infinity (decay, oscil-
lations. .. ) while k is used to test the analytic smoothness. However near the corner
{p = o = 0} these two informations are mixed. As in the usual case, it is necessary
to define such transforms for a large class of phases. Moreover one should be able to
change phases, symbols and cut-off functions, in particular, to show the invariance
of the ¥“WF, ; to achieve these invariances, in particular to go from one phase to
another, one has to make a careful study of the pseudo-differential operators in the
complex domain, then in the real domain and to pass from the first theory to the
second by some delicates changes of contours. Here the situation is complicated by
the fact that our FBI phases have an imaginary part which goes to zero with h. In
the appendix the reader will find a complete Sjostrand’s theory in the case of two
scales.

Concerning the propagation theorems we consider a Schrédinger equation with a
Laplacian A, with respect to a scattering metric g in the sense of Melrose ; this means
that, near the boundary one can write g = dp—’f p%7 where h is a metric such that
h|aasr is positive definite. This includes, of course the flat metric for which h = dw?,
but also the asymptotically flat metrics on R™. In this setting we try to answer the
following question. Let mg be a point in C = qSCT}; M UBCS* M u be a solution of
the initial value problem for this Schrodinger equation and 7" > 0. On what condition
on up do we have my & W F,(u(T,-)) ? The answer, which depends strongly on
the position of mg in C, requires a careful study of the flow of the Laplacian on C.
This can be found in Wunsch [W1] ; however a still more precise description near the
corner {p = o = 0} is needed here. The different statements, according to the position
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4 CHAPTER 0. INTRODUCTION

of mg in C, will follow from four propagation results : propagation inside 41, M,
inside ¢S*M or along the corner (for the uniform °WF, and fixed t), from the
interior to the corner and finally from the boundary at infinity to the corner. To give
a flavor of the results obtained, let us describe the case of the first situation. Let
0 <t <ty and mg € ©T M. Assume that exptHa(mg) (the flow of the Laplacian
at infinity through mg) stays, for ¢ € [t1,to], inside the interior of 9Ty, M. Then
expt1 Ha(mg) does not belong to W F,(u(ty,-)) if and only if exptaHa(mg) does
not belong to B°W Fy (u(ts,-)). Coming back to the above question, this result can be
applied (with 1 = 0,t2 = t) when my = (0, yo, Ao, £0) in the following cases : o # 0
or o =10, Ao >0 or g =0, Ao <0, t <—1/2)g, because, in the later case, the flow
starting from mg reaches the corner after a finite time ¢t = —1/2\.

A complete description of the other cases can be found in § 4.

Let us now describe the method of proofs. The first idea, which comes from Sjos-
trand’s work [Sj], is that the FBI transform can be used, at the same time, to test
the microlocal smoothness and, as a Fourier integral operator, to reduce an oper-
ator to a simpler form. Let us be more precise. We look for a family of phases
v = @(0;p/h,y,a, h) and symbols a = a(8; p/h,y,a, h, k) depending on a parameter
0, such that

9 - A K ih ™2k Yoy _ —e/hk
(0.3) <% —|—2Ag> (ae )—(9(6 ), e>0,
where A7 is the adjoint of the Laplacian Ag.

This leads to the eikonal equation for ¢,

a 20y Oy
4 — h —,5— | =
(0.4 89+p(s 0?9,558) 0
and to the transport equations,
+oo
(0.5) Xaj+WkQaj 1 =b;, if a=> (WWk)a;,
j=0

where X is a non degenerate real vector field and @ a second order differential oper-
ator.

As soon as we have solved these equations, we see that the corresponding FBI
transform 7u(0;t, o, h, k) satisfies the real transport equation

19 0
Z . _ —c/hk
(0.6) (kao—l—at)Zu(G,t,a,h,k) O(e ), c>0,

and the propagation theorems follow easily.

The main point of the paper is therefore to solve (0.4) and (0.5). The resolution of
the eikonal equation (0.4) requires the use of the complex symplectic geometry. We
make a careful study of the bicharacteristic flow to span a nice complex Lagrangian
manifold on which the symbol q = 0* + p(sh,y, 752, sn) vanishes. It should be noted
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