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FEYNMAN-KAC FORMULAS FOR THE ULTRA-VIOLET
RENORMALIZED NELSON MODEL

Oliver MATTE, Jacob Schach MØLLER

Abstract. — We derive Feynman-Kac formulas for the ultra-violet renormalized
Nelson Hamiltonian with a Kato decomposable external potential and for corre-
sponding fiber Hamiltonians in the translation invariant case. We simultaneously
treat massive and massless bosons. Furthermore, we present a non-perturbative
construction of a renormalized Nelson Hamiltonian in a non-Fock representation
defined as the generator of a corresponding Feynman-Kac semi-group. Our novel
analysis of the vacuum expectation of the Feynman-Kac integrands shows that, if
the external potential and the Pauli-principle are dropped, then the spectrum of
the N-particle renormalized Nelson Hamiltonian is bounded from below by some
negative universal constant times g4N3, for all values of the coupling constant g.
A variational argument also yields an upper bound of the same form for large g2N.
We further verify that the semi-groups generated by the ultra-violet renormalized
Nelson Hamiltonian and its non-Fock version are positivity improving with respect
to a natural self-dual cone, if the Pauli principle is ignored. In another application
we discuss continuity properties of elements in the range of the semi-group of the
renormalized Nelson Hamiltonian.

Résumé (Formules de Feynman-Kac pour le modèle de Nelson ultra-violet renormalisée)
On s’intéresse à la dérivation des formules de Feynman-Kac pour l’Hamiltonien

du modèle de Nelson ultra-violet renormalisée avec potentiel Kato-décomposable, et
pour les fibré Hamiltoniens correspondants dans le cas de l’invariance par translation.
On traite simultanément des bosons lourds et sans masse. On présente également
une construction non perturbative de l’Hamiltonien de Nelson renormalisée dans une
représentation de non-Fock, définie comme étant le générateur du semi-groupe de
Feyman-Kac associé. La nouvelle approche de l’analyse des valeurs moyennes asso-
ciées au vide des intégrandes de Feynman-Kac montre que, en l’absence de potentiel
externe et dans le cas où le principe de Pauli est ignoré, le spectre de l’Hamiltonien
du modèle de Nelson avec N particules est minoré par une constante négative univer-
selle multipliée par g4N3, pour n’importe quelle valeur de la constante de couplage g.
Un argument variationnel permet également d’obtenir une majoration faisant inter-
venir une quantité analogue, pour de grandes valeurs de g2N. On vérifie de plus que le
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semi-groupe généré par l’Hamiltonien du modèle de Nelson ultra-violet renormalisée
améliore la positivité par rapport à un cône auto-dual naturel, pourvu que le prin-
cipe de Pauli est exclut. Une partie de l’étude s’intéresse également aux propriétés de
continuité des éléments de l’image du semi-groupe associé à l’Hamiltonien de Nelson
renormalisée.
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CHAPTER 1

INTRODUCTION

More than half a century ago, Edward Nelson studied the renormalization theory

of a model for a conserved number of non-relativistic scalar matter particles inter-

acting with a quantized radiation field comprised of relativistic scalar bosons. This

model is a priori given by a heuristic Hamiltonian equal to the sum of the Schrödinger

operator for the matter particles, the radiation field energy operator, and a field op-

erator describing the interaction between the matter particles and the radiation field.

This heuristic expression is, however, mathematically ill-defined because the physi-

cally relevant choice of the interaction kernel determining the field operator is not a

square-integrable function of the boson modes. Hence, one starts out by introducing

an artificial ultra-violet cut-off rendering this kernel function square-integrable and

the Hamiltonian well-defined. The question, then, is whether the so-obtained ultra-

violet regularized Nelson Hamiltonians converge in a suitable sense as the cut-off

is removed, possibly after adding cut-off dependent energy shifts that would not

harm physical interpretations. Nelson approached this mathematical problem by

probabilistic methods in [48] and by operator theoretic arguments in [49].
In his earlier probabilistic investigation Nelson eventually considered the matrix

elements of the unitary groups generated by the regularized Hamiltonians with an

explicitly given energy renormalization added and proved that, for strictly positive

boson masses and fixed time parameters, these matrix elements are convergent as

the cut-off is removed, in the weak-∗ sense as bounded measurable functions of the

particle mass. While he knew that these limits are non-trivial, he could not yet decide

whether they define a new unitary group or not. This was clarified in his second

work cited where, after adding the energy renormalization and applying unitary

Gross transformations, he obtained a sequence of Hamiltonians converging in the

norm resolvent sense. As the Gross transformations converge strongly, this implied

strong resolvent convergence of the original regularized operators plus the energy

shifts towards a renormalized Nelson Hamiltonian.
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Ealier results on Nelson’s renormalized operator. — Given that the two afore-

mentioned papers of Nelson date back to 1964 the number of mathematical articles

explicitly addressing properties of his renormalized model is not very large, whence

we give a brief, essentially chronological survey in what follows.

The first results following [48], [49] are the construction of asymptotic fields for

massive bosons by Høegh-Krohn [35] and of renormalized fiber Hamiltonians in

the translation-invariant case by Cannon [12], who adapted the procedure in [49].
Cannon also proved the existence of non-relativistic Wightman distributions and, for

a sufficiently weak matter-radiation coupling, the existence of dressed one-particle

states aswell as analyticity of the corresponding energies and eigenvectors. Cannon’s

smallness assumptions on the coupling depend on the strictly positive boson mass

he was cosidering. His results were pushed forward by Fröhlich [22] who gave non-

perturbative proofs of Cannon’s results, that hold for any strictly positive bosonmass

or, alternatively, infra-red cut-off, irrespective of the value of the coupling constant.

In this article Fröhlich also found a rich class of Hilbert spaces, including examples

of von Neumann’s incomplete direct product spaces, on which the renormalization

procedure of [49] can be implemented. Fröhlich [21] employed his results to discuss

the infra-red problemand aspects of scattering theory for a class ofmodels containing

the Nelson model. In particular, for vanishing boson mass and without any cut-offs,

he constructed coherent infra-red representation spaces which are attached to total

momenta of the matter-radiation system and contain dressed one-particle states that

are ground states of, roughly speaking, certain non-Fock versions of the renormalized

fiber Hamiltonians. He also proved the absence of dressed one-particle states in the

original Fock space for vanishing bosonmass, a phenomenon known as infra-particle

situation.

After a gap of more than twenty-five years in the mathematical literature on the

renormalized Nelson Hamiltonian, its spectral and scattering theory in a confin-

ing potential and for massive bosons has been worked out by Ammari [3], who

proved a HVZ theorem, positive commutator estimates, the existence of asymp-

totic fields, propagation estimates, and asymptotic completeness. A few years later,

Hirokawa et al. [33] considered a system of two particles with charges of equal sign,

one of themstatic, interactingvia a linearly coupledmassless bosonfield. After apply-

ing aGross transformation to the corresponding ultra-violet regularizedHamiltonian

they found a Hamiltonian for one particle coupled to the radiation field with an ad-

ditional attractive potential playing the role of an effective interaction between the

two particles. The Gross transformation is actually infra-red singular for zero boson

mass. Thus, an artificial infra-red cut-off is included in its definition. By improving

some of Nelson’s [49] relative bounds so as to cover massless bosons, Hirokawa et al.
removedboth theultra-violet and infra-red cut-offs in theirGross transformedHamil-

tonian and obtained, for sufficiently small coupling constants, a self-adjoint operator
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CHAPTER 1. INTRODUCTION 3

called renormalized Nelson Hamiltonian in the associated non-Fock representation.

The latter turned out to have a ground state eigenvector. Employing this result,

Hainzl et al. [32] established a formula for the first radiative correction to the binding

energy of this interacting two-particle system. Not long after these developments, a

paper of Ginibre et al. [25] appeared concerning a certain partially classical limit of

the Nelson model for any non-negative boson mass and without cut-offs.

The investigation of the infra-particle nature of themasslessNelsonmodelwithout

cut-offs has been revisited more recently by Bachmann et al. [6] employing Pizzo’s

iterative analytic perturbation theory. While their results hold for sufficiently small

coupling only, they provide more detailed control on the mass-shell and the dressed

one-particle states than earlier results.

Nelson’s operator theoretic renormalization procedure [49] has also been imple-

mented on static Lorentzian manifolds and for position-dependent boson masses by

Gérard et al. [23]. Comparatively recently, Nelson’s [48] earlier approach has been

revived as well by Gubinelli et al. [29], who succeeded by probabilistic arguments to

verify strong convergence of the semi-group as an ultra-violet regularization is re-

moved in aNelsonHamiltonian formassivebosons. In the samepaper, Gubinelli et al.
also computed effective potentials in the weak coupling limit of the renormalized

theory. Hiroshima [34] treated infra-red cut-off fiber Hamiltonians along the same

lines as well.

Ammari and Falconi [4] proved a Bohr correspondence principle showing that, in

a classical limit, the time evolution of quantum states generated by a renormalized

Nelson Hamiltonian for massive bosons converges to the push-forward of a Wigner

measure under the dynamics of a nonlinear Schrödinger-Klein-Gordon system. They

also explored the idea to carry through a renormalization procedure on the classical

level and to Wick quantize the result afterwards, which leads to the same renormal-

ized operator in the Nelson model.

Bley and Thomas [7], [8], [10] recently developed a general newmethod to bound a

class of exponential moments that often arise when functional integration techniques

are applied in non-relativistic quantum (field) theory. Applied to the renormalized

NelsonHamiltonian, with non-negative bosonmass and vanishing exterior potential,

this method yields a lower bound on its spectrum of the form

−cg4N3
(
1 ∨ ln

2([1 ∨ g2]N)
)
,

(see [8]), where N is the number of matter particles and the modulus of the coupling

constant g is either assumed to be sufficiently large or sufficiently small. Here we

should add that, as we shall do in the present work, Bley fixes the explicit energy

counter terms in the renormalization procedure, which are proportional to g2
, in

such a way that no contribution of order g2
shows up in his lower bound for the

renormalized operator. This differs from the convention in [49]. Using his bound,

Bley [9] also provided a non-binding condition in the massless Nelson model for
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4 CHAPTER 1. INTRODUCTION

two matter particles, whose effective attraction mediated by the radiation field is

compensated for by a repulsive Coulomb interaction.

Note added in proof. —Some information on the domain of the renormalizedNelson

operator has been obtained by Griesemer andWünsch [27]. In fact, they showed that

the only vector belonging both to the form domain of the renormalized Nelson

operator and the form domains of the ultra-violet regularized operators is the zero

vector. Furthermore, in a recent preprint, Miyao [46] proved that the semigroups

generated by the fiber Hamiltonians in the translation invariant renormalizedNelson

model are ergodic, provided that elements of the usual Fock space are called positive,

if all their n-particle components are a.e. positive functions.

We restricted the above summary to articles explicitly containing theorems on the

renormalized Nelson model, as an account on the numerous mathematical papers

devoted to ultra-violet regularized Nelson Hamiltonians would be far too space-

consuming. For a general introduction to the model and more references the reader

can consult, e.g., the textbook [40]. A renormalization of a translation-invariant

Nelson type model for a relativistic scalar matter particle interacting with a massive

boson field [28] actually leads to a theory with a flat mass shell [15].

Description of results. — The first main result of the present book is a novel

Feynman-Kac formula for the renormalized Nelson Hamiltonian for N matter parti-

cles in a Kato decomposable external potential V and for non-negative bosonmasses.

Denoting the latter operator by HV
N,∞ it reads

(1.1)


(e−tHV

N,∞Ψ)(x ) � E
[
WV
∞,t(x )∗Ψ(x + bt)

]
, a.e.,

WV
∞,t(x )∗ � e

uN
∞,t (x )−

∫ t
0

V(x+bs )ds F
0,t/2

(
−UN,−

∞,t (x )
)
F

0,t/2
(
−UN,+

∞,t (x )
)∗
,

for every t > 0, where, in standard notation recalled later on,

F0,s( f ) :�

∞∑
n�0

a†( f )n
n!

e
−s dΓ(ω) , s > 0.

In (1.1), Ψ is a Fock space-valued square-integrable function of x ∈ R3N
and b

is a 3N-dimensional Brownian motion. The real-valued stochastic process uN
∞,t(x ) is

called the complex action following Feynman [19] and the UN,±
∞,t (x ) are continuous

adapted stochastic processes with values in the one-boson Hilbert space h :� L2(R3).
The series defining F0,s( f ) converges in the Fock space operator norm and defines an

analytic function of f ∈ h.
For ultra-violet regularized Nelson Hamiltonians, the special form (1.1) of the

Feynman-Kac formula appeared in [30]. We shall re-prove it tomake this book essen-

tially self-contained and to demonstrate that theNelsonmodel admits a simpler proof

than the models in [30] which in general involve minimally coupled fields as well.
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CHAPTER 1. INTRODUCTION 5

In fact, our derivation of (1.1) consists in implementing a new renormalization proce-

dure on the level of semi-groups in the spirit of [29], [48] and re-defining HV
N,∞ as the

generator of the semi-group given by the right hand sides in (1.1). We shall actually

observe norm convergence of semi-groupswith hardly any technical restriction on the

details of the ultra-violet regularization; see also [3] as well as Theorem 2.4 and the

remarks following it. Our definition of HV
N,∞ is manifestly independent of the choice

of any cut-off function, purely and simply as this is the case for the right hand sides

in (1.1). With comparatively little extra work we shall also derive new Feynman-Kac

formulas for the renormalized Nelson Hamiltonian in the non-Fock representation

considered in [32] and for fiber Hamiltonians in the translation-invariant renormal-

ized Nelson model. In particular, we shall provide the first non-perturbative con-

struction of a renormalized Nelson Hamiltonian in a non-Fock representation.

The crucial point about the Feynman-Kac representation (1.1) is that it provides

a fairly simple and tractable formula for a well-defined Fock space operator-valued
process WV

∞(x ) in the Feynman-Kac integrand and can be applied to every elementΨ

of the Hilbert space for the whole system. While Nelson and Gubinelli et al. have
Feynman-Kac type representations of expectation values with respect to vectors in

certain total subsets of theHilbert space (involving suitable finite particle states [48] or
coherent states [29] in Fock space), the merit of writing the Feynman-Kac formula in

the form (1.1) is that it allows to first find explicit expressions for UN,±
∞,t (x ) containing

well-defined h-valued stochastic integrals and then to derive operator-norm bounds
on WV

∞(x ) with finite moments of any order. Furthermore, our formulas permit

to verify a Markov property of the Feynman-Kac integrand. In particular, we can

work out basic features of a semi-group theory in Fock space-valued Lp
-spaces in the

spirit of [13], [56]. Along the way we further present a new method to bound the

exponential moments of the complex action uN
∞,t(x ) which eventually leads to the

improved lower bound

inf σ(H0

N,∞) > −cg4N3 ,(1.2)

valid for all g and N with a universal constant c > 0; see the introduction to Section 4.3

for more remarks on this new method and a discussion of earlier results [7], [8], [10],
[29], [48]. (Here we ignore that the matter particles are supposed to be fermions, i.e.,
the Pauli principle is neither taken into account here nor in [7], [8], [10], [29], [48].)
We shall employ a novel bound on an ultra-violet part of uN

∞,t(x ) together with a

more standard trial function argument to derive the upper bound in

−(16π)2g4N3 − c′g2N2 6 inf σ(H0

N,∞)(1.3)

6 8π4EPg
4N3

+ c′′
(
1 + µ + ln(g2N)

)
g2N2 , provided that g2N > c.

Here µ > 0 is the boson mass, EP < 0 is the Pekar energy, and c , c′, c′′ > 0 are

universal constants. (With gN denoting the coupling constant inNelson’s articles [48],
[49], we have the relation 2

1/2(2π)3/2g � gN.) The leading behavior ∝ −g4N3
in (1.2)
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6 CHAPTER 1. INTRODUCTION

and (1.3) is familiar from the closely related Fröhlich polaron model [7], [8], [39],
which can be renormalized as in [49] evenwithout introducing energy counter terms.

(If a sufficiently strong electrostatic Coulomb repulsion between the matter particles

is taken into account, then one actually observes thermodynamic stability, i.e., a
behavior of the minimal energy proportional to −N in the Fröhlich polaron model

without restriction to symmetry subspaces [20]. For sufficiently weak electrostatic

repulsion, theminimal energy of fermionicmulti-polaron systems behaves like−N7/3
,

see [26].) The work on the polaron model [39] suggests that 8π4EP should in fact be

the correct leading coefficient in (1.3). Numerics shows (see [24]) that

EP � −0.10851 . . . ,

whence the leading coefficient in the lower bound in (1.3) is presumably too large by

the factor 32/π2 |EP | < 30. Getting rid of this artifact is, however, beyond the scope

of this book.

Finally, we present two applications of the new formula (1.1). First, we shall fill

a gap left open in the earlier literature by proving that the semi-groups generated

by the renormalized Nelson Hamiltonian and its non-Fock version are positivity

improving at positive times with respect to a natural convex cone. In the non-Fock

case this result was explicitly mentioned as an open problem in [33, §10] and it

entails uniqueness and strict positivity of the ground state eigenvector found there.

As already observed in [43] the ergodicity of the semi-groups follows easily from

the structure of the integrand in (1.1) and standard tools associated with Perron-

Frobenius type arguments in quantum field theory; see, e.g., [18], [57]. In the second

application we employ some results of [43] on ultra-violet regularized operators to

discuss the continuous dependence of the right hand side in the first line of (1.1)

on x , g, and V .

Organization and general notation

The remaining part of this book is structured as follows

. In Chapter 2 we introduce some basic notation and give a precise definition of

Nelson’s model.

. In Chapter 3 we shall analyze certain x -independent one-particle versions of

UN,±
∞,t (x ) and eventually define the latter two processes.

. Chapter 4 is devoted to the complex action uN
∞,t(x ).

. In Chapter 5 wework out the semi-group properties between Fock space-valued

Lp
-spaces including the norm convergence of semi-groups, as the ultra-violet

cut-off is removed.

ASTÉRISQUE 404



CHAPTER 1. INTRODUCTION 7

. At the end of Chapter 5 we establish the above Feynman-Kac formula and

(re-)define the renormalized Nelson Hamiltonian; see Theorem 5.13 and Defini-

tion 5.14. (Our version of Nelson’s theorem is also anticipated in Theorem 2.4.)

The lower bound (1.2) is obtained in Corollary 5.16.

. The Feynman-Kac formulas in the non-Fock representation and for the fiber

Hamiltonians are derived in Chapter 6 and Chapter 7, respectively.

. The positivity improving and continuity properties alluded to above as well as

the bounds in (1.3) are proved in Chapter 8.

. The main text is followed by three appendices presenting well-known material

on the Kolmogorov test lemma, exponential moment bounds for sums of pair

potentials (see also [8]), and a general formula for the infimum of a spectrum.

Some general notation

. The characteristic function of a set A is denoted by 1A.

. We abbreviate

a ∧ b :� min{a , b} and a ∨ b :� max{a , b}, for a , b ∈ R.

. The Borel σ-algebra of a topological space T is denoted by B(T).

. The Lebesgue-Borel measure on Rn
is denoted by λn

and, as usual, we shall

write

dt :� dλ1(t), dx :� dλ3(x), etc.,
if a symbol t, x, etc., for the integration variable is specified.

. The set of bounded operators on a Banach space X is denoted by B(X).

. The symbols D(T) andQ(T) stand for thedomain and formdomain, respectively,

of a suitable linear operator T.
. The spectrum of a self-adjoint operator T in a Hilbert space is denoted by σ(T).
. The symbols ca ,b ,... , c′a ,b ,... , . . . denote non-negative constants that depend solely

on the quantities displayed in their subscripts (if any). Their values might

change from one estimate to another.
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