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LOCAL REGULARITY PROPERTIES
OF ALMOST- AND QUASIMINIMAL SETS

WITH A SLIDING BOUNDARY CONDITION

par Guy DAVID

Abstract. — We study the boundary regularity of almost minimal and quasiminimal
sets that satisfy sliding boundary conditions. The competitors of a set E are defined
as F = ϕ1(E), where {ϕt} is a one parameter family of continuous mappings de-
fined on E, and that preserve a given collection of boundary pieces. We generalize
known interior regularity results, and in particular we show that the quasiminimal
sets are locally Ahlfors-regular, rectifiable, and some times uniformly rectifiable, that
our classes are stable under limits, and that for almost minimal sets the density of
Hausdorff measure in balls centered on the boundary is almost nondecreasing.

Résumé. (Propriétés de régularité locale des ensembles presque- et quasiminimaux avec
une condition de frontière glissante) —On s’intéresse à la régularité jusqu’à la frontière
des ensembles presque minimaux et quasiminimaux sous une condition de glissement.
Les compétiteurs d’un ensemble E y sont de la forme F = ϕ1(E), où {ϕt} est une
famille à un paramètre d’applications continues définies sur E, et qui préservent des
ensembles frontières donnés à l’avance. On généralise des résultats connus à l’intérieur,
et on démontre notamment l’Ahlfors régularité, la rectifiabilité et parfois l’uniforme
rectifiabilité locales des ensembles quasiminimaux, la stabilité des classes considérées
par limites, et la presque monotonie de la densité des ensembles presque minimaux
sur des boules centrées à la frontière.
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FREQUENTLY USED NOTATION

B(x, r) =
{
y ; |y−x| < r

}
is the open ball

centered at x and with radius r > 0.
Hd is the d-dimensional Hausdorff mea-

sure. See [22] or [32].
GSAQ = GSAQ(U,M, δ, h) is a class of

quasiminimal sets; see Definition 2.3.
Wt =

{
y ∈ E ∩ B ;ϕt(y) 6= y

}
and

Ŵ =
⋃

0<t≤1Wt ∪ ϕt(Wt); see (2.1).
E∗ =

{
x ∈ E ; Hd(E ∩ B(x, r)) >

0 for every r > 0
}
is the core of E;

see (3.2).
dx,r(E,F ) is almost a normalized Haus-

dorff distance in B(x, r); see (10.5).
† † delimits a proof or comment that con-

cerns the Lipschitz assumption only.
Wf =

{
x ∈ Rn ; f(x) 6= x

}
; see (11.19).

f̃(x) = ψ(λf(x)) (used in Part IV, in the
Lipschitz case); see (11.50), (12.75).

Bj = B(xj , t), j ∈ J1, is our first collec-
tion of balls (Part IV); see (12.8)–
(12.9).

Bj = B(xj , rj), j ∈ J2, is the second col-
lection of balls; see Lemma 13.

Dj = B(yj , rj), j ∈ J3, balls in the image,
are used with the Bj,x; see (14.12)–
(14.14).

Bj,x, x ∈ Z(yj), is our third collection of
balls; see (14.19) and (14.1).

h(r) is a gauge function that measures al-
most minimality; see (19.1) and Def-
inition 19.2.

I (U, a, b), Il(U, a, b), and I +(U, a, b) are
classes of elliptic integrands; see
Definition 24.3, Claim 24.91, and
(24.96).
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PART I

INTRODUCTION AND DEFINITIONS





CHAPTER 1

INTRODUCTION

The main purpose of this paper is to study the boundary regularity properties of
minimal, almost minimal, and quasiminimal sets, subject to sliding boundary condi-
tions that we will explain soon.

A long term motivation is to study various types of Plateau problems, but where
the objects under scrutiny are a priori just sets (rather than currents or varifolds),
and we want to assume as little structure on them as possible. In this respect, the
sliding conditions below seem natural to the author, and should be flexible enough to
allow for a variety of applications.

Let us give a very simple example of a Plateau problem that we may want to study,
and for which we do not have an existence result yet. Let Γ ⊂ Rn be a smooth closed
curve, and let E0 ⊂ Rn be a compact set that contains Γ. For instance, parameterize
Γ by the unit circle, extend the parameterization to the closed unit disk, and let E0 be
the image of the disk. Many other examples are possible, but with this one we should
not get a trivial problem for which the infimum is zero. Our Plateau problem consists
in minimizing H 2(E) among all sets E that can be written E = ϕ1(E0), where {ϕt},
0 ≤ t ≤ 1, is a continuous, one parameter family of continuous mappings from E0

to Rn, with ϕ0(x) = x for x ∈ E0 and ϕt(x) ∈ Γ for 0 ≤ t ≤ 1 when x ∈ E0 ∩ Γ.
Thus, along our deformation of E0 by the ϕt, we allow the points of Γ to move, but
only along Γ; this is why we shall use the term “sliding boundary condition”.

Minimizers of this problem, if they exist, will be among our simplest examples
of minimal sets with a sliding boundary condition. But solutions of other types of
Plateau problems (Reifenberg minimizers as in [R1,2], [19], or [21], or size minimizing
currents under the boundary constraint ∂T = G, where G denotes the current of
integration along Γ, when they exist, also yield minimal sets with a sliding boundary
condition. Thus regularity results for sliding minimal sets may be useful for a variety
of problems, and we can also hope that they may help with existence results.

Let us first give some definitions, and then discuss these issues a little more. The
sets that we want to study are variants of the Almgren minimal, almost minimal, or
quasiminimal sets (he said “restricted sets”), as in [3], but where we add boundary
constraints and are interested in the behavior of these sets near the boundary.
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4 CHAPTER 1. INTRODUCTION

We work in a closed region Ω of Rn, which may also be Rn itself, and we give
ourselves a finite collections of closed sets Lj ⊂ Ω, 0 ≤ j ≤ jmax, that we call
boundary pieces. It will make our notation easier to consider Ω as our first boundary
piece, i.e., set

(1.1) L0 = Ω.

For the elementary Plateau problem suggested above, for instance, we would work
with L0 = Ω = Rn and L1 = Γ.

We are also given an integer dimension d, with 0 ≤ d ≤ n − 1, and we consider
closed sets E ⊂ Ω, whose d-dimensional Hausdorff measure is locally finite, i.e., such
that

(1.2) Hd(E ∩B(x, r)) < +∞

for x ∈ Ω and r > 0. The next definition explains what we mean by a deformation
of E that preserves the boundary pieces.

Definition 1.3. — Let B = B(y, r) be a closed ball in Rn. We say that the closed
set F ⊂ Ω is a competitor for E in B, with sliding conditions given by the closed
sets Lj, 0 ≤ j ≤ jmax, when F = ϕ1(E) for some one-parameter family of functions
ϕt, 0 ≤ t ≤ 1, with the following properties:

(t, x)→ ϕt(x) is a continuous mapping from [0, 1]× E to Rn,(1.4)

ϕt(x) = x for t = 0 and for x ∈ E \B,(1.5)

ϕt(x) ∈ B for x ∈ E ∩B and t ∈ [0, 1],(1.6)

and, for 0 ≤ j ≤ jmax,

ϕt(x) ∈ Lj when t ∈ [0, 1] and x ∈ E ∩ Lj ∩B.(1.7)

We also require that

(1.8) ϕ1 be Lipschitz,

but with no bounds required.

We shall sometimes say “sliding competitor in B” instead of “competitor for E in B,
with sliding conditions given by the Lj , 0 ≤ j ≤ jmax,” especially when our choice
of Ω and the list of Lj are clear from the context.

We shall soon discuss minimality, almost minimality, and quasiminimality relative
to this notion of sliding competitors, but since the class of competitors is often the
most important part of the definitions, a number of general comments on Definition 1.3
will be helpful.

It is important here that ϕ1 is allowed not to be injective. So we are allowed to
merge different portions of E, or contract them to a point, or pinch them in some other
way. This, together with the fact that we shall not count measure with multiplicity,
is why the union of two parallel disks that lie close to each other will not be minimal.
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CHAPTER 1. INTRODUCTION 5

We added the last requirement (1.8) because Almgren put it in his definitions, and
because this will not disturb. If we drop it, we get more competitors for E, which
means that the almost- and quasiminimality properties are harder to get. Hence the
regularity results proved here are also valid in the context where we drop (1.8). On the
other hand, (1.8) will often be easy to prove, so it does not bother us much. The author
suspects that the reason why Almgren added (1.8) may be the following. Suppose you
want to show that the support of a size minimizing current T is a minimal set and,
to simplify the discussion, that you are proceeding locally, in the complement of the
boundary sets. You are given a deformation {ϕt} as in Definition 1.3, and of course
the simplest way to use it is to show that pushing T by the ϕt, and in particular ϕ1,
defines an acceptable competitor for T (with the same boundary constraints). The
constraint (1.8) just makes it possible to define the pushforward of T by ϕ1, so it is
convenient. See [11] for details on this argument and its extension to the boundary.

In the other direction, J. Harrison and H. Pugh once asked wether requiring ϕ1,
or even all the ϕt, to be smooth, would lead to the same classes of almost- and
quasiminimal sets. The question was raised in the local context with no boundaries,
but it also makes sense in the present context. The answer is yes under suitable
conditions on the Lj , and if smooth means C1. For higher regularity, a proof seems
to be manageable, but quite ugly, and so we only give a very rough sketch of how we
would proceed, using the construction of Part IV. This is discussed in Chapter 27.

We are allowed to take Ω = Rn, and then (1.7) for j = 0 is just empty and if
there is no other boundary piece we get a minor variant of Almgren’s definition of
competitors in Rn. Of course we can still restrict the list of competitors like he did,
by requiring that B lie in a fixed open set U , or that its diameter be less than some
δ > 0; we shall do this when we discuss our classes of almost- and quasiminimal sets,
but let us not worry for the moment.

The main difference with Almgren’s definition comes from the sliding boundary
constraint (1.7), and this is also why we insist on the fact that ϕ1 is the endpoint of a
continuous deformation. If we did not require (1.7), and we were given a continuous
mapping ϕ1 such that ϕ1(x) = x for x ∈ E \ B and ϕ1(x) ∈ B for x ∈ B, we could
define the ϕt by ϕt(x) = tϕ1(x) + (1 − t)x, and it is easy to check that (1.4)–(1.6)
would hold (because B is convex). We could also extend ϕ1 to Rn, which fits with
the fact that ϕ1 is traditionally defined on Rn, not just on E. But in the present
situation we want points of the boundary Lj to stay in Lj (hence, (1.7)), and then
it seems natural to say that the deformation condition in (1.7) only concerns points
of E: we do not want to say that the air besides our soap film E is also concerned by
the sliding boundary constraint. Notice that the ϕt can be extended to Rn (but in a
way that may not preserve the Lj), so we do not have to worry about the case where
our deformations would yield a tearing apart (cavitation) of the air besides the soap
film.

Notice that with our convention that L0 = Ω, the set ϕt(E) stays in Ω, i.e.,

(1.9) ϕt(x) ∈ Ω for x ∈ E and t ∈ [0, 1],
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6 CHAPTER 1. INTRODUCTION

either because x ∈ E \B and ϕt(x) = x ∈ E ⊂ Ω by (1.5), or else by (1.1) and (1.7)
with j = 0.

The author thinks that Definition 1.3 is a nice way to encode boundary constraints,
for instance that would be satisfied when E is a soap film in a domain. A Plateau
boundary constraint could for instance be associated to one or a few curves Lj , but
we could also think about L1 = ∂Ω (or some other surface) as being a boundary along
which the soap film may slide (as if loosely attached to a wall). It is quite probable
that such boundary conditions were studied in the past, but the author does not know
where. In [38], J. Taylor came close to giving a similar definition in a slightly different
context (flat chains modulo 2), but apparently forgot to state (1.7) or another similar
condition.

Once we have a notion of competitors, we can define a corresponding notion of
minimal sets. Let us say, for the moment, that the closed set E ⊂ Ω is minimal, with
the sliding boundary conditions defined by the Lj , 0 ≤ j ≤ jmax, if Hd(E) < +∞
and

(1.10) Hd(E) ≤Hd(F ) whenever F is a sliding competitor for E in some ball B,

where we allow B to depend on F . Many variants of this definition will be proposed,
where one may localize the definition to an open set U , or add a small error term
to the right-hand side in (1.10) (this is how we will define almost minimal sets), or
even allow stronger distortions (this will give rise to quasiminimal sets). We shall give
the main definitions in Chapter 2 (for the generalized quasiminimal sets) and later in
Chapter 20 (for almost minimal sets), but for the moment the sliding minimal sets
that satisfy (1.10) will give a fair idea of what we want to study.

Of course our notion of competitors can be used to define Plateau problems, as
we did earlier with a single curve. Given a collection of boundary pieces Lj , and a
closed set E0, we can try to minimize Hd(E) among all the sets E that are sliding
competitors of E0 (in some ball B that depends on E, or in some fixed huge ball that
contains Ω). If E0 is badly chosen (for instance, if some sliding competitors of E0 are
reduced to a point), the problem may not be interesting, but it is easy to produce lots
of examples where the infimum will be finite and positive. For most of these examples,
we do not have an existence result. But it is clear that if minimizers for this Plateau
problem exist, they are sliding minimal sets.

The main point of this paper is to study the general (hence often rather weak)
regularity properties of the minimal sets, and their almost minimal and quasiminimal
variants, in particular when we approach the boundary pieces Lj . In practical terms,
this means that we will take many interior regularity results for Almgren minimal (or
quasiminimal) sets, and try to adapt their proofs so that they work all the way to
the boundary. But before we say more about this, let us comment a little more on
Definition 1.3 and our motivations.

The word sliding may be misleading in some cases, as some sets Lj may be reduced
to points, where in effect no sliding will be allowed. Our assumptions on the Lj will
only allow a finite number of points where E is fixed. So, for instance, we do not
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CHAPTER 1. INTRODUCTION 7

consider the case where Γ is a simple curve and we require that ϕt(x) = x for every
point x ∈ E ∩ Γ. This will not bother us, and probably such a condition would make
it too hard to produce competitors and get information on E near Γ when E is a
minimal set with these constraints. Of course we could always say that E is locally
minimal (for instance) in the domain U = Rn \ Γ, and get some information from
this, but this is not the point of this paper. On the contrary, the author believes that
because we allow our competitors to slide along the Lj , we will have an amount of
flexibility in the construction of competitors, which we can use to prove some decent
regularity results. And at the same time (1.7) looks like a reasonable constraint, for
instance, if we want to model the behavior of soap films.

We believe that in addition to being interesting by themselves, regularity results
for sliding minimal or almost sets could be useful to prove existence results (in very
simple cases) for the Plateau problems discussed above, and also for other similar
problems, because some other types of minimizers also yield sliding minimal sets. Let
us give two examples.

In [35], Reifenberg proposed a Plateau problem where we are given a compact
boundary set L ⊂ Rn of dimension d − 1, and we minimize Hd(E) among compact
sets E that bound L, in the sense that L ⊂ E and the natural map induced by the
inclusion, from the (d− 1)-dimensional Čech homology group of L to the (d− 1)-di-
mensional Čech homology group of E, is trivial. He also proves a fairly general ex-
istence result, and good interior regularity results for the minimizers (see [R1,2]).
These results were generalized by various authors; see for instance [1], [19], and more
recently [21] for a quite general existence result. Also see [26] for a simpler variant of
[35] in codimension 1, where one replaces the computation of Čech homology groups
with a simpler linking condition, and which comes with a simpler proof and is related
to differential chains.

It is easy to see that if the boundary set L is not too ugly, the minimizing sets
that are obtained in these papers are sliding minimal sets associated to L0 = Rn and
L1 = L. See [11] for the rather easy verification, whose main point is just that if E
bounds L and F is a sliding competitor for E, then F bounds L too.

Reifenberg’s homological Plateau problem and its minimizers are very nice, and give
good descriptions of many soap films, but some people prefer the related problem of
size minimizers. That is, we are given a (d− 1)-dimensional integral current S, with
∂S = 0, and we look for a d-dimensional integral current T such that ∂T = S and
whose size (understand, the Hd-measure of the set where the multiplicity is nonzero,
but we shall be slightly sloppy on the definitions) is minimal. If d = 2, L is a nice
closed curve in R3, and S is the current of integration on L, T. De Pauw showed in
[19] that the infimum for this problem is the same as for Reifenberg’s homological
problem (where Čech homology is computed over the group Z); but even though De
Pauw showed that Reifenberg homological minimizers exist, size minimizers are not
known yet to exist. Anyway, size minimizers, if they exist, are also supported (under
reasonable conditions) on sliding minimal sets. The point now is that if T is supported
by the closed set E and F is a sliding competitor for E, then we can use ϕ1 to push T
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