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UNITARY REPRESENTATIONS OF REAL REDUCTIVE GROUPS

by Jeffrey D. ADAMS, Marc A. A. van LEEUWEN,
Peter E. TRAPA & David A. VOGAN, Jr.

Abstract. — We present an algorithm for computing the irreducible unitary represen-
tations of a real reductive group G. The Langlands classification, as formulated by
Knapp and Zuckerman, exhibits any representation with an invariant Hermitian form
as a deformation of a unitary representation from the Plancherel formula. The behav-
ior of these deformations was in part determined in the Kazhdan-Lusztig analysis of
irreducible characters; more complete information comes from the Beilinson-Bernstein
proof of the Jantzen conjectures.

Our algorithm traces the signature of the form through this deformation, count-
ing changes at reducibility points. An important tool is a variant of Weyl’s “unitary
trick”: replacing the classical invariant Hermitian form (where Lie(G) acts by skew-
adjoint operators) by a new one (where a compact form of Lie(G) acts by skew-adjoint
operators).

Résumé. (Représentations unitaires des groupes de Lie réductifs) — Nous présentons
un algorithme pour le calcul des représentations unitaires irréductibles d’un groupe
de Lie réductif réel G. La classification de Langlands, dans sa formulation par Knapp
et Zuckerman, présente toute représentation hermitienne comme étant la déformation
d’une représentation unitaire intervenant dans la formule de Plancherel. Le comporte-
ment de ces déformations est en partie déterminé par l’analyse de Kazhdan-Lusztig
des caractères irréductibles; une information plus complète provient de la preuve par
Beilinson-Bernstein des conjectures de Jantzen.

Notre algorithme trace à travers cette déformation les changements de la signature
de la forme qui peuvent intervenir aux points de réductibilité. Un outil important
est une variante de “l’astuce unitaire” de Weyl: on remplace la forme hermitienne
classique (pour laquelle Lie(G) agit par des opérateurs antisymétriques) par une forme
hermitienne nouvelle (pour laquelle c’est une forme compacte de Lie(G) qui agit par
des opérateurs antisymétriques).

© Astérisque 417, SMF 2020
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CHAPTER 1

FIRST INTRODUCTION

The purpose of this paper is to give a finite algorithm for computing the set of
irreducible unitary representations of a real reductive Lie group G. Before explaining
the nature of the algorithm, it is worth recalling why this is an interesting question.
A serious historical survey would go back at least to the work of Fourier (which can
be understood in terms of the irreducible unitary representations of the circle).

Since we are not serious historians, we will begin instead with a formulation of
“abstract harmonic analysis” arising from the work of Gelfand beginning in the 1930s.
In Gelfand’s formulation, one begins with a topological groupG acting on a topological
spaceX. A reasonable example to keep in mind isG = GL(n,R) acting on the spaceX
of lattices in Rn. What makes such spaces difficult to study is that there is little scope
for using algebra.

The first step in Gelfand’s program is therefore to find a nice Hilbert space H

(often of functions on X) on which G acts by unitary operators:

π : G→ U(H ).

For example, if G preserves a measure on X, one can take

H = L2(X).

Such a group homomorphism (assumed to be continuous, in the sense that the map

G×H →H , (g, v) 7→ π(g)v

is continuous) is called a unitary representation of G. Gelfand’s program says that
questions about the action of G on X should be recast as questions about the unitary
representation of G on H , where one can bring to bear tools of linear algebra.

One of the most powerful tools of linear algebra is the theory of eigenvalues and
eigenvectors, which allow some problems about linear transformations of a complex
vector space to be understood by decomposing the space as a direct sum of one-
dimensional invariant subspaces, in each of which the transformation is just multi-
plication by a complex number. These one-dimensional subspaces preserved by the
linear transformation are those spanned by an eigenvector of the transformation,
and the associated complex number its eigenvalue. In unitary representation theory
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2 CHAPTER 1. FIRST INTRODUCTION

the analogue of such a one-dimensional space is an irreducible unitary representa-
tion: a nonzero unitary representation having no proper closed subspaces invariant
under π(G). Just as a finite-dimensional complex vector space equipped with a (nice
enough) linear transformation is a direct sum of subspaces spanned by eigenvectors, so
any (nice enough) unitary representation is something like a direct sum of irreducible
unitary sub-representations.

The assumption that we are looking at a unitary representation avoids the diffi-
culties (like nilpotent matrices) attached to eigenvalue decompositions in the finite-
dimensional case; but allowing infinite-dimensional Hilbert spaces introduces com-
plications of other kinds. First, one must allow not only direct sums but also “direct
integrals” of irreducible representations. This complication appears already in the case
of the action of R on L2(R) by translation. The decomposition into one-dimensional
irreducible representations is accomplished by the Fourier transform, and so involves
integrals rather than sums.

For general groups there are more serious difficulties, described by von Neumann’s
theory of “types”. But one of Harish-Chandra’s fundamental theorems ([14, Theo-
rem 7]) is that real reductive Lie groups are “type I,” and therefore that any unitary
representation of a real reductive group may be written uniquely as a direct integral
of irreducible unitary representations. The second step in Gelfand’s program is to
recast questions about the (reducible) unitary representation π into questions about
the irreducible representations into which it is decomposed.

The third step in Gelfand’s program is to describe all of the irreducible unitary
representations of G. This is the problem of “finding the unitary dual”

(1.1a) Ĝu =def {equiv. classes of irreducible unitary representations of G}.

It is this problem for which we offer a solution (for real reductive G) in this paper. It is
far from a completely satisfactory solution for Gelfand’s program; for of course what
Gelfand’s program asks is that one should be able to answer interesting questions
about all irreducible unitary representations. (Then these answers can be assembled
into answers to the questions about the reducible representation π, and finally trans-
lated into answers to the original questions about the topological space X on which
G acts.) We offer not a list of unitary representations but a method to calculate the
list. To answer general questions about unitary representations in this way, one would
need to study how the questions interact with our algorithm.

Which is to say that we may continue to write papers after this one.
Here is an outline of the algorithm for identifying unitary group representations.

We will use a number of ideas to be introduced and explained only later. What we
will actually describe is an algorithm for computing the signature of an invariant
Hermitian form on any irreducible representation that admits one. The algorithm for
calculating signatures of invariant Hermitian forms in the analogous setting of highest
weight modules is treated by Yee in [48, 49]. We follow her ideas closely.

The Langlands classification Theorem 6.1 realizes each irreducible representation
π1 of G as the unique irreducible quotient of an induced representation π1. This
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CHAPTER 1. FIRST INTRODUCTION 3

induced representation is part of an analytic one-parameter family {πt | t ∈ [0,∞)} of
representations. (One simply replaces the real part νRe of the continuous parameter
(cf. Proposition 4.3) by tνRe.) If π1 is tempered (and therefore unitary), then νRe = 0

and πt = π1 = π1 is a constant family. In all cases π0 is tempered, and therefore
unitary. The representation πt is irreducible except for a discrete set of values of t.

In case π1 admits an invariant Hermitian form 〈 , 〉1, we can extend it to an analytic
one-parameter family 〈 , 〉t of invariant Hermitian forms for the representations πt
(Proposition 14.2). This result of Knapp and Stein is one of the earliest general tools
for studying non-tempered unitary representations. Because of the analyticity, the
signature of the form 〈 , 〉t is locally constant on the open set where πt is irreducible.
Because π0 is unitary, the form 〈 , 〉0 is definite.

Our algorithm calculates the signature of 〈 , 〉t beginning with the definiteness
at t = 0, and then calculating the change in the signature at each reducibility point
t′ ∈ [0, 1]. This idea, taken from [46], is Corollary 14.8. The answer is described in
terms of forms on subquotients of the Jantzen filtration of πt′ (defined in (14.3)).

We have therefore described the signature of the invariant form 〈 , 〉1 in terms of
various signatures of forms on subquotients π′ of πt′ , for t′ ≤ 1. The reason this leads
to an effective algorithm is that (as is evident from Langlands’ arguments in [29]) the
real part Re ν′ of the continuous parameter attached to π′ satisfies

‖Re ν′‖ < ‖Re ν‖.

In order to carry out this computation, we first need to identify explicitly the
irreducible representations π′ appearing in the various levels of the Jantzen filtrations.
This is done by the Jantzen Conjecture (Theorem 18.11, proved by Beilinson and
Bernstein in [5]). The answer is phrased in terms of the Kazhdan-Lusztig polynomials
defined and calculated in [31].

All of these ideas were in place in the 1980s. The great difficulty is that each irre-
ducible representation π′ with an invariant Hermitian form actually has two inequiv-
alent forms, one the negative of the other; and there is no way to specify a preferred
form. (A convincing example of this phenomenon is provided by the two-dimensional
irreducible representation π1 of G = SU(1, 1). There is an invariant Hermitian form
of signature (1, 1) on π1. This form and its negative are exchanged by the action of
the outer automorphism group of G.)

When π′ appears in a Jantzen filtration (and therefore carries a form defined by
Jantzen, related to our orginal 〈 , 〉1 by analytic continuation) we must decide which
of the two forms on π′ is the Jantzen form. This is the content of Theorem 20.6.

The main idea in the proof of Theorem 20.6 is evident in its statement: the theorem
refers to Hermitian forms preserved not by the real Lie algebra g0, but rather by
a compact real form of g0. We call these forms c-invariant forms. Their existence
(which is quite easy) is Proposition 10.7. The great advantage of c-invariant forms is
that they are automatically definite on the lowest K-types (see Proposition 10.7(5)).
Consequently there is a natural choice of c-invariant form, the one which is positive
on all the lowest K-types.
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4 CHAPTER 1. FIRST INTRODUCTION

Of course we are ultimately interested in ordinary invariant Hermitian forms rather
than c-invariant forms, so we need to be able to translate signature calculations from
one to the other. This is done by Theorem 12.9. The translation depends on extending
the representation to include an action of the Cartan involution. The Cartan involu-
tion is inner exactly when rank(G) = rank(K); this setting has been called the equal
rank case since the work of Harish-Chandra on discrete series representations in the
1960s. In the equal rank case, the translation of signatures between invariant and
c-invariant forms is elementary (Theorem 11.2).

When the Cartan involution is not inner (the unequal rank case), we need to extend
the representations we study to include an action of the Cartan involution. Formally
this is a straightforward version of “Clifford theory”; the result is Theorem 13.15. But
we also need to extend the theory of Kazhdan-Lusztig polynomials to these extended
groups, and this is a serious matter. (The outer automorphisms act on the perverse
sheaves calculated in [31], and we need to know the +1 and −1 eigenspaces of this
action on each cohomology stalk.) The mathematical ideas are in [32], and the tracking
of signs is done in [2]. One formulation of the answer is Corollary 21.4.

We offer more details about the algorithm in Chapter 7, after recalling results of
Harish-Chandra, Langlands, and others in terms of which it is formulated.

Chapter 22 carries out the algorithm for the complex reductive group SL(2,C),
computing all invariant Hermitian forms and in particular identifying the unitary
representations (first described in [13]).

The algorithm described in this paper has been implemented in the atlas soft-
ware package [11]. There it has been tested on thousands of known unitary (and
non-unitary) representations of groups of rank up to about eight. The software in its
present form is not fast enough to determine the unitarity of an arbitrary representa-
tion of our favorite example, the split real form of E8.

One general abuse of notation: we will deal with an enormous number of automor-
phisms σ (of many kinds of mathematical objects) with the property that σ2 is the
identity. We will express this property by saying that σ has order two, even though
it is more precise to say that “σ has order one or two”.

We thank Annegret Paul, whose expert reading of a draft of this paper led to many
emendations and improvements. We thank Chao-Ping Dong and Geordie Williamson
for pointing to a number of typographical errors. Geordie also made a valiant (but
only partly successful) attempt to help us translate from American into English.

We are deeply grateful to George Lusztig for producing the mathematics in [32],
without which we would have been unable to complete this work.

Finally, we thank Wai Ling Yee, whose work first showed us that an analysis of uni-
tary representations along these lines might be possible; indeed we hoped to persuade
her to be a coauthor.
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