ASTERISQUE

A LOCAL TRACE FORMULA
FOR THE GAN-GROSS-PRASAD CONJECTURE
FOR UNITARY GROUPS:
THE ARCHIMEDEAN CASE

Raphaél BEUZART-PLESSIS

SOCIETE MATHEMATIQUE DE FRANCE



Astérisque est un périodique de la Société Mathématique de France.

Numéro 418, 2020

Comité de rédaction

Marie-Claude ARNAUD Fanny KASSEL
Christophe BREUIL Eric MOULINES
Damien CALAQUE Alexandru OANCEA

Philippe EYSSIDIEUX Nicolas RESSAYRE
Christophe GARBAN Sylvia SERFATY

Colin GUILLARMOU
Nicolas BURQ (dir.)

Diffusion
Maison de la SMF AMS
Case 916 - Luminy P.O. Box 6248
13288 Marseille Cedex 9 Providence RI 02940
France USA

commandes@smf .emath.fr http://www.ams.org

Tarifs

Vente au numéro : 55 € ($82)
Abonnement Europe : 665 €, hors Europe : 718 € ($1077)

Des conditions spéciales sont accordées aux membres de la SMF.

Secrétariat
Astérisque
Société Mathématique de France
Institut Henri Poincaré, 11, rue Pierre et Marie Curie
75231 Paris Cedex 05, France
Fax: (33) 01 40 46 90 96

asterisque@smf.emath.fr e http://smf.emath.fr/

© Société Mathématique de France 2020

Tous droits réservés (article L 122—4 du Code de la propriété intellectuelle). Toute représentation ou
reproduction intégrale ou partielle faite sans le consentement de l’éditeur est illicite. Cette représen-
tation ou reproduction par quelque procédé que ce soit constituerait une contrefagon sanctionnée par
les articles L 335-2 et suivants du CPI.

ISSN: 0303-1179 (print) 2492-5926 (electronic)
ISBN 978-2-85629-919-7
doi:10.24033 /ast.1120

Directeur de la publication : Fabien Durand




ASTERISQUE

A LOCAL TRACE FORMULA
FOR THE GAN-GROSS-PRASAD CONJECTURE
FOR UNITARY GROUPS:
THE ARCHIMEDEAN CASE

Raphaél BEUZART-PLESSIS

SOCIETE MATHEMATIQUE DE FRANCE



Raphaél Beuzart-Plessis

Aix Marseille University
CNRS, Centrale Marseille, I12M
Marseille, France
rbeuzart@gmail.com

Texte regu le 8 septembre 2015, accepté le 19 juin 2018.

Mathematical Subject Classification (2010). — 22E50; 11F85, 20G05.

Keywords. — Local trace formula, Gan-Gross-Prasad conjecture, representations of real and p-adic
Lie groups.

Mots-clefs. — Formule des traces locale, conjecture de Gan-Gross-Prasad, représentations des groupes
de Lie réels et p-adiques.



A LOCAL TRACE FORMULA FOR THE GAN-GROSS-PRASAD
CONJECTURE FOR UNITARY GROUPS:
THE ARCHIMEDEAN CASE

by Raphaél BEUZART-PLESSIS

Abstract. — In this volume, we prove, inspired by earlier work of Waldspurger on
orthogonal groups, a sort of local trace formula which is related to the local Gan-Gross-
Prasad conjecture over any local field F' of characteristic zero. As a consequence, we
obtain a geometric formula for certain multplicities m(7) appearing in this conjecture
and deduce from it a weak form of the local Gan-Gross-Prasad conjecture (multiplicity
one in tempered L-packets). These results were already known over p-adic fields by
previous work of the author and thus are only new when F' = R. However, the proof
we present here works uniformly over all local fields of characteristic zero.

Résumé. (Une formule de traces locale reliée a la conjecture de Gan-Gross-Prasad pour
les groupes unitaires) — Dans cet ouvrage, on établit, en s’inspirant de travaux an-
térieurs de Waldspurger pour les groupes orthogonaux, une sorte de formule des traces
relative reliée a la conjecture locale de Gan-Gross-Prasad pour les groupes unitaires
sur un corps local F' de caractéristique nulle. Comme conséquence, on obtient une
formule géométrique pour certaines multiplicités m(7) apparaissant dans cette con-
jecture dont on déduit une forme faible de la conjecture locale de Gan-Gross-Prasad
(multiplicité un dans les L-paquets tempérés). Ces résultats étaient déja connus pour
les corps p-adiques, d’aprés un travail précédent de 'auteur, et ne sont donc nouveaux
que pour F' = R. Cependant, la preuve présentée ici s’applique uniformément & tous
les corps locaux de caractéristique zéro.

(© Astérisque 418, SMF 2020






CONTENTS

Introduction . ............. i 1
1. Preliminaries ............ ...t e 11
1.1. General notation and conventions ............... ..., 11
1.2. Reminder of norms on algebraic varieties ........................... 15
1.3. A useful lemma ... 18
1.4. Common spaces of functions ..............ciiiiiiiiiiii i, 22
1.5. Harish-Chandra Schwartz space ..............cooiiiiiiiiiiniennn.n. 24
1.6, MEASUTES . .vvt ittt ettt e e 29
1.7. Spaces of conjugacy classes and invariant topology .................. 31
1.8. Orbital integrals and their Fourier transforms ....................... 33
1.9. (G, M)-families .......o.oiuiinii e 34
1.10. Weighted orbital integrals ............. .. . i 36
2. Representations ........... ...ttt 39
2.1. Smooth representations, elliptic regularity .......................... 39
2.2. Unitary and tempered representations ............... ...t 40
2.3. Parabolic induction .......... ... i 44
2.4. Normalized intertwining operators ............ .. ... 48
2.5. Weighted characters ... 49
2.6. Matricial Paley-Wiener theorem and Plancherel-Harish-Chandra
theorem ... ... i 51
2.7. Elliptic representations and the space JU(G) ........coviiiiiin .. 53
3. Harish-Chandradescent ................c..iiiiiiiiiiiiiiniinnnan.. 57
3.1. Invariant analysis .......... . .. 57
3.2. Semi-simple descent ........ ... 61
3.3. Descent from the group to its Lie algebra ........................... 66
3.4. Parabolic induction of invariant distributions ....................... 69
4. Quasi-characters ............. ...t 73
4.1. Quasi-characters when F'is p-adic .............ociiiiiiiiii .. 73
4.2. Quasi-characters on the Lie algebra for F =R ...................... 77
4.3. Local expansions of quasi-characters on the Lie algebra when F = R 89
4.4. Quasi-characters on the group when F =R ......................... 91
4.5, FUNCEIONS Cg v vvvvett ittt e e 96
4.6. Homogeneous distributions on spaces of quasi-characters ............ 97
4.7. Quasi-characters and parabolic induction ........................... 100

SOCIETE MATHEMATIQUE DE FRANCE 2020



viii

4.8.

CONTENTS

Quasi-characters associated to tempered representations and Whittaker
QA A ottt e

5. Strongly cuspidal functions ........... ... .. ..

5.1.
9.2
5.3.
5.4.
5.5.
9.6.
5.7.

Definition, first properties ...........ccoviiiiiiiiiiii i
Weighted orbital integrals of strongly cuspidal functions ............
Spectral characterization of strongly cuspidal functions .............
Weighted characters of strongly cuspidal functions ..................
The local trace formulas for strongly cuspidal functions .............
Strongly cuspidal functions and quasi-characters ....................
Lifts of strongly cuspidal functions ................ ... ..ol

6. The Gan-Gross-Prasad triples ............... .. . iiiiiiiiiiiiiiiiiinan.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.

Hermitian spaces and unitary groups ................... ... ...
Definition of GGP triples ...
The multiplicity m(m) ....oovii
H\@G is a spherical variety, good parabolic subgroups ...............
Some eStimates . ........ii i
Relative weak Cartan decompositions ................ccoivviiinnonn.
The function EF\G
Parabolic degenerations ..............ciiiiiiiiiiiii

7. Explicit tempered intertwinings ............. .. .. .. il

7.1
7.2.
7.3.
7.4.
7.5.
7.6.

The £-integral ...
Definition of &y oo oo
Asymptotics of tempered intertwinings ............. ... .. oL
Explicit intertwinings and parabolic induction ......................
Proof of Theorem 7.2.1 ...t e
A COrollary ...

8. The distributions J and J&Me ... ..

8.1.
8.2.

The distribution J P T
The distribution J&Me .

9. Spectral eXpansion .................i i

9.1.
9.2.
9.3.

The theorem . ..... ..o .
Study of an auxiliary distribution .......... ... ... .o
End of the proof of Theorem 9.1.1 ...,

10. The spectral expansion of J&€ ... ... ... ... . ...

10.1.
10.2.
10.3.
10.4.
10.5.
10.6.
10.7.
10.8.

ASTERIS

The affine subspace X ... .. i
Conjugation by N ...
Characteristic polynomial ......... .. ... . i i,
Characterization of X/ ... ...
Conjugacy classes in X/ .. ...t e
Borel subalgebras and X/ . ...
The quotient X' (F)/H(F) o.ouiue i
Statement of the spectral expansion of J¥€ ........................

QUE 418

103

107
107
109
110
111
115
117
121

129
129
131
133
134
139
144
147
154

159
159
162
167
171
181
183

185
185
195

197
197
197
203

205
205
206
208
209
210
212
217
220



CONTENTS

10.9. Introduction of a truncation .............. ...,
10.10. Change of truncation .............c..coiuiiiiiiiiiiiiiineannenn.
10.11. End of the proof of Theorem 10.8.1 ...,

11. Geometric expansions and a formula for the multiplicity .................
11.1. Some spaces of conjugacy classes ..........c.cooveiiiiiniiiiiinenn...
11.2. The linear forms mgeom and mZie ... ...

11.3. Geometric multiplicity and parabolic induction ....................

11.4. Statement of three theorems ........... ... .. ... i,

11.5. Equivalence of Theorem 11.4.1 and Theorem 11.4.2 ................

11.6. Semi-simple descent and the support of Joc — Mgeom «-vvvvvvnvnnn.

11.7. Descent to the Lie algebra and equivalence of Theorem 11.4.1 and

Theorem 11.4.3 ... o e e

11.8. A first approximation of JIi® —mpie ...

11.9. End of the proof ....... ..o i

12. An application to the Gan-Gross-Prasad conjecture ......................
12.1. Strongly stable conjugacy classes, transfer between pure inner forms
and the Kottwitz sign ........ ... . .. i

12.2. Pure inner forms of a GGP triple ......... ... ... .. il
12.3. The local Langlands correspondence ...............ccooeviiiinn...
12.4. The theorem .......... i et
12.5. Stable conjugacy classes inside T'(G, H) ...ovvriiniiiininnen...
12.6. Proof of Theorem 12.4.1 ... ..o it

A. Topological VeCtOr SPACES ... ........c.iiuiutmuin i eneanens
AL LF SPaCES vttt ettt e
A.2. Vector-valued integrals .......... ... .o i
A.3. Smooth maps with values in topological vector spaces ..............
A.4. Holomorphic maps with values in topological vector spaces .........
A.5. Completed projective tensor product, nuclear spaces ...............

B. Someestimates ............. ..
B.1. Three lemmas ...t e
B.2. Asymptotics of tempered Whittaker functions for general linear

BIOUDS + ettt ettt et et e et e e e e e e e
B.3. Unipotent estimates ............ouiiiiiiiiiiiiii i

Bibliography .. ...

List of NOtAtioNS ... ...ttt

221
225
231

233
233
239
247
247
248
250

252
254
255

257

258
262
262
264
264
268

271
272
272
273
276
277

281
281

282
284

295
301

SOCIETE MATHEMATIQUE DE FRANCE 2020






INTRODUCTION

Let F be a local field of characteristic 0 which is different from C. So, F' is either
a p-adic field (that is a finite extension of Q,) or F' = R. Let E/F be a quadratic
extension of F' (if F' = R, we have E = C) and let W C V be a pair of Hermitian
spaces having the following property: the orthogonal complement W+ of W in V is
odd-dimensional and its unitary group U(W+) is quasi-split. To such a pair (that
we call an admissible pair, cf. Section 6.2), Gan, Gross and Prasad associate a triple
(G, H,§). Here, G is equal to the product U(W) x U(V) of the unitary groups of W
and V, H is a certain algebraic subgroup of G and ¢ : H(F) — S! is a continuous
unitary character of the F-points of H. In the case where dim(W=) = 1, we just have
H = U(W) embedded in G diagonally and the character £ is trivial. For the definition
in codimension greater than 1, we refer the reader to Section 6.2. We call a triple like
(G, H, &) (constructed from an admissible pair (W,V)) a GGP triple.

Let 7 be a tempered irreducible representation of G(F'). By this, we mean that 7 is
an irreducible unitary representation of G(F) whose coefficients satisfy a certain
growth condition (an equivalent condition is that 7w belongs weakly to the regular
representation of G(F')). We denote by 7> the subspace of smooth vectors in 7. This
subspace is G(F)-invariant and carries a natural topology (if F = R, this topology
makes m° into a Fréchet space whereas if F' is p-adic the topology on 7°° doesn’t
play any role but in order to get a uniform treatment we endow 7°° with its finest
locally convex topology). Following Gan, Gross and Prasad, we define a multiplicity
m(m) by

m(m) = dim Hompg (7%, ),

where Hom g (7°°, £) denotes the space of continuous linear forms ¢ on 7°° satisfying
the relation £ o w(h) = £(h){ for all h € H(F). By the main result of [33] (in the real
case) and [1] (in the p-adic case) together with Theorem 15.1 of [26], we know that
this multiplicity is always less or equal to 1.

The main result of this paper extends this multiplicity one result to a whole
L-packet of tempered representations of G(F'). This answers a conjecture of Gan,
Gross and Prasad (Conjecture 17.1 of [26]). Actually, the result is better stated if
we consider more than one GGP triple at the same time. In any family of GGP
triples that we are going to consider there is a distinguished one corresponding to the
case where G and H are quasi-split over F'. So, for convenience, we assume that the
GGP triple (G, H, &) we started with satisfies this condition. The other GGP triples
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2 INTRODUCTION

that we need to consider may be called the pure inner forms of (G, H,£). Those are
naturally parametrized by the Galois cohomology set H'(F, H). A cohomology class
a € HY(F, H) corresponds to a Hermitian space W, (up to isomorphism) of the same
dimension as W. If we set V,, = W, @+ W+, then (W,,V,) is an admissible pair and
thus gives rise to a new GGP triple (Gy, Ha,&n). The pure inner forms of (G, H,¢)
are exactly all the GGP triples obtained in this way.

Let ¢ be a tempered Langlands parameter for G. According to the local Langlands
correspondence (which is now known in all cases for unitary groups, cf. [34] and
[48]), this parameter determines an L-packet I1%(y) consisting of a finite number of
tempered representations of G(F'). Actually, this parameter also defines L-packets
%= () of tempered representations of G (F) for all « € H(F,H). We can now
state the main result of this paper as follows (cf. Theorem 12.4.1).

Theorem 1. — There exists exactly one representation m in the disjoint union
of L-packets
|| 1T ()
a€HY(F,H)

such that m(w) = 1.

As we said, this answers in the affirmative a conjecture of Gan-Goss-Prasad (Con-
jecture 17.1 of [26]). The analog of this theorem for special orthogonal groups has
already been obtained by Waldspurger in the case where F' is p-adic [59]. In [17], the
author adapted the proof of Waldspurger to deal with unitary groups but again under
the assumption that F' is p-adic. Hence, the only new result contained in Theorem 1
is when F' = R. However, the proof we present here differs slightly from the original
treatment of Waldspurger and we feel that this new approach is more amenable to
generalizations. This is the main reason why we are including the p-adic case in this
paper. Actually, it doesn’t cost much: in many places, we have been able to treat the
two cases uniformly and when we needed to make a distinction, it is often because
the real case is more tricky.

As in [59] and subsequently [17], Theorem 1 follows from a formula for the mul-
tiplicity m(m). This formula express m(m) in terms of the Harish-Chandra character
of . Recall that, according to Harish-Chandra, there exists a smooth function 6, on
the regular locus Gieg(F') of G(F') which is locally integrable on G(F') and such that

Trace w(f) = /G(F) 0. (z)f(x)dx

for all f € C°(G(F)) (here C°(G(F')) denotes the space of smooth and compactly
supported functions on G(F)). This function 6, is obviously unique and is called the
Harish-Chandra character of 7. To state the formula for the multiplicity, we need to
extend the character 6, to a function

et Ges(F) — C
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INTRODUCTION 3

on the semi-simple locus Gss(F) of G(F). If € Greg(F), then cr(x) = 6,(x) but
for a general element z € Gg(F), cx(x) is in some sense the main coefficient of
a certain local expansion of 0, near x. For a precise definition of the function c,,
we refer the reader to Section 4.5, where we consider more general functions that
we call quasi-characters and which are smooth functions on Gieg(F') sharing almost
all of the good properties that characters of representations have. As we said, it is
through the function ¢, that the character 6, will appear in the multiplicity formula.
The other main ingredient of this formula is a certain space I'(G, H) of semi-simple
conjugacy classes in G(F). For a precise definition of I'(G, H), we refer the reader to
Section 11.2. Let us just say that I'(G, H) comes naturally equipped with a measure
dz on it and that this measure is not generally supported in the regular locus. For
example, the trivial conjugacy class {1} is an atom for this measure whose mass is
equal to 1. Apart from these two main ingredients (the function ¢, and the space
I'(G, H)), the formula for the multiplicity involves two normalizing functions D¢ and
A. Here, D€ is the usual discriminant whereas A is some determinant function that
is defined in Section 11.2. We can now state the formula for the multiplicity as follows
(cf. Theorem 11.4.2).

Theorem 2. — For every irreducible tempered representation © of G(F), we have the
equality
m(m) = lim cx(z) D ()2 A(z) " 2 da.
s—0t Jp(G, H)

The integral in the right hand side of the equality above is absolutely convergent
for all s € C such that Re(s) > 0 and moreover the limit as s — 07 exists (cf.
Proposition 11.2.1).

As we said, Theorem 1 follows from Theorem 2. This is proved in the last chapter
of this paper (Chapter 12). Let us fix a tempered Langlands parameter ¢ for G. The
main idea of the proof, the same as for Theorem 13.3 of [59], is to show that the sum

(0.0.1) > > m(n),

a€H(F,H) n€llCa (p)

when expressed geometrically through Theorem 2 contains a lot of cancelations which
roughly come from the character relations between the various stable characters as-
sociated to ¢ on the pure inner forms of G. Once these cancelations are taken into
account, the only remaining term is the term corresponding to the conjugacy class
of the identity inside I'(G, H). By classical results of Rodier and Matumoto, this last
term is related to the number of generic representations inside the quasi-split L-packet
II%(y). By the generic packet conjecture, which is now known for unitary groups, we
are able to show that this term is equal to 1 and this immediately implies Theorem 1.
Let us now explain in more detail how it works. Fix momentarily o € H(F, H).
Using Theorem 2, we can express the sum

> mm)

T€ICa ()
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4 INTRODUCTION

as

(0.02) lim o) DO (@) A (w)* 2,
§=0% JT(Go,Ha)

where we have set ¢, o = ZWEHGa(Lp
that the sum of characters 0,0 = >, crica (o) O defines a function on G reg(F') Which

) Cr- One of the main properties of L-packets is

is stable, which here means that it is invariant by G, (F)-conjugation. In Section 12.1,
we define a notion of strongly stable conjugacy for semi-simple elements of G, (F).
This definition of stable conjugacy differs from the usually accepted one (cf. [40]) and is
actually stronger (hence the use of the word “strongly”). The point of introducing such
a notion is the following: it easily follows from the stability of 6, . that the function
Cp,o 18 constant on semi-simple strongly stable conjugacy classes. This allows us to
further transform the expression 0.0.2 to write it as

lim 1P L an (2) o0 (2) DC= (2) /2 A(2)* 2 d,

520 JTan (Ga Ha)
where T'stab(Ga, H,) denotes the space of strongly stable conjugacy classes
inT'(Ga, Hy) and py, stab stands for the natural projection I'(G o, Hy) = T'stab(Ga, Ho)
(thus |p;’lstab(x)| is just the number of conjugacy classes in I'(G,, H,) belonging to
the strongly stable conjugacy class of z). Returning to the sum 0.0.1, we can now
write it as

003 >, lm P kot (@l (2) D% (2) 2 A 2) 2 d.
aeHl(F,H)s_’O Tstab(Ga Ha)

A second very important property of L-packets is that the stable character 6, . is
related in a simple manner to the stable character 6,1 on the quasi-split form G(F').
More precisely, Kottwitz [41] has defined a sign e(G,) such that we have 6, o(y) =
e(Ga)0y1(x) as soon as y € G reg(F) and @ € Greg(F) are stably conjugate regular
elements (i.e., are conjugate over the algebraic closure where G, (F) = G(F)). Once
again, this relation extends to the functions c, o and c, 1 and we have c, o(y) =
e(Ga)cp,1(x) for all strongly stably conjugate elements y € Gq os(F) and x € Ggs(F').
As it happens, and contrary to the regular case, there might exist semi-simple elements
in G4 (F) which are not strongly stably conjugate to any element of the quasi-split
form G(F'). However, we can show that the function ¢, , vanishes on such elements
z € Ga,ss(F). Therefore, these conjugacy classes don’t contribute to the sum 0.0.3
and transferring the remaining terms to G(F'), we can express 0.0.3 as a single integral

lim ( > e(Ga(y))> o1 (x)DC ()2 A(z)* =V dx,
I'(G,H)

s—0t
Y~stab®

where the sum

(0.0.4) > e(Gagy)

Y~stabT
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INTRODUCTION S

is over the conjugacy classes y in the disjoint union UaeHl(F’H) I'(Ga, H,) that
are strongly stably conjugate to x and a(y) € H'(F,H) denotes the only coho-
mology class such that y lives in I'(Gy(y), Ha(y)). There is a natural anisotropic
torus T,, C H associated to z € I'ya,(G, H) such that the set of conjugacy classes
in |_|aeH1(F’H) I'(Ga, Hy) lying inside the strongly stable conjugacy class of z is natu-
rally in bijection with H!(F,T,) (cf. Section 12.5 for the definition of T}). Moreover,
for y € H'(F,T,), the cohomology class a(y) is just the image of y via the natural
map HY(F,T,) — H'(F, H). Hence, the sum 0.0.4 equals

(0.0.5) > e(Gagy))-

yeEHY (F,\T,)

In order to further analyze this sum, we need to recall the definition of the sign
e(G,,). In [41], Kottwitz constructs a natural map H' (F,G) — H%(F,{+1}) = Bry(F)
from H(F,G) to the 2-torsion subgroup of the Brauer group of F. Since F is either
p-adic or real, we have an isomorphism Bro(F) ~ {£1}. The sign e(G,) for a €
H'(F, H) is now just the image of a by the composition of this map with H(F, H) —
H!(F,QG). Following Kottwitz’s definition, it is not hard to see that the composition
HY(F,T,) — H'(F,G) — Bry(F) is a group homomorphism. Moreover, it turns out
that for z # 1 this homomorphism is surjective and this immediately implies that
for such an z the sum 0.0.5 is zero. Going back to 0.0.3, we are only left with the
contribution of 1 € I'(G, H) which is equal to

6%1(1).

By a result of Rodier [49] in the p-adic case and of Matumoto [46] in the real case,
the term ¢, 1(1) has an easy interpretation in terms of Whittaker models. More pre-
cisely, this term equals the number of representations in the L-packet II¢(y) having
a Whittaker model, a representation being counted as many times as the number of
types of Whittaker models it has, divided by the number of types of Whittaker models
for G(F). A third important property of L-packets is that II%(p) contains exactly one
representation having a Whittaker model of a given type. It easily follows from this
that ¢, 1(1) = 1. Hence, the sum 0.0.1 equals 1 and this ends our explanation of how
Theorem 2 implies Theorem 1.

The proof of Theorem 2 is more involved and takes up most of this paper. It is at
this point that our strategy differs from the one of Waldspurger. In what follows, we
explain the motivations and the main steps of the proof of Theorem 2. Consider the
unitary representation L?(H (F)\G(F),&) of G(F). It is the L2-induction of the char-
acter £ from H(F) to G(F') and it consists in the measurable functions ¢: G(F) — C
satisfying the relation p(hg) = &£(h)e(g) (h € H(F), g € G(F')) almost everywhere

and such that
/ lo(x)2dz < oo.
H(F)\G(F)

The action of G(F) on L?(H(F)\G(F),£) is given by right translation. Since
the triple (G, H,&) is of a very particular form, the direct integral decomposition
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