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COLORED STOCHASTIC VERTEX MODELS
AND THEIR SPECTRAL THEORY

by Alexei BORODIN & Michael WHEELER

Abstract. — This work is dedicated to sln+1-related integrable stochastic vertex mod-
els; we call such models colored. We prove several results about these models, which
include the following:

1. We construct the basis of (rational) eigenfunctions of the colored transfer-
matrices as partition functions of our lattice models with certain boundary
conditions. Similarly, we construct a dual basis and prove the corresponding
orthogonality relations and Plancherel formulae.

2. We derive a variety of combinatorial properties of those eigenfunctions, such as
branching rules, exchange relations under Hecke divided-difference operators,
(skew) Cauchy identities of different types, and monomial expansions.

3. We show that our eigenfunctions are certain (non-obvious) reductions of the
nested Bethe Ansatz eigenfunctions.

4. For models in a quadrant with domain-wall (or half-Bernoulli) boundary condi-
tions, we prove a matching relation that identifies the distribution of the colored
height function at a point with the distribution of the height function along a
line in an associated color-blind (sl2-related) stochastic vertex model. Thanks
to a variety of known results about asymptotics of height functions of the color-
blind models, this implies a similar variety of limit theorems for the colored
height function of our models.

5. We demonstrate how the colored/uncolored match degenerates to the colored
(or multi-species) versions of the ASEP, q-PushTASEP, and the q-boson model.

6. We show how our eigenfunctions relate to non-symmetric Cherednik-Macdonald
theory, and we make use of this connection to prove a probabilistic match-
ing result by applying Cherednik-Dunkl operators to the corresponding non-
symmetric Cauchy identity.

Résumé. (Modèles de sommets stochastiques colorés et leur théorie spectrale) —
Cet ouvrage est dédié aux modèles de sommets stochastiques intégrables liés à
l’algèbre sln+1 ; nous appelons ces modèles colorés. Nous prouvons plusieurs résultats
sur ces modèles, dont les suivants :
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1. Nous construisons la base de fonctions propres (rationnelles) des matrices de
transfert colorées en tant que fonctions de partition de nos modèles. De même,
nous construisons une base duale et prouvons les relations d’orthogonalité et les
formules de Plancherel correspondantes.

2. Nous dérivons une variété de propriétés combinatoires de ces fonctions propres,
telles que les règles de branchement, les relations d’échange sous les opérateurs
de différences divisées de Hecke, les identités de Cauchy de types différents et
les développements de monômes.

3. Nous montrons que nos fonctions propres sont des réductions (non évidentes)
des fonctions propres du «nested Bethe Ansatz».

4. Pour les modèles dans un quadrant avec des conditions aux limites de type
«domain wall» (ou «half-Bernoulli»), nous prouvons une relation qui identifie
la distribution de la fonction de hauteur colorée en un point avec la distribution
de la fonction de hauteur non-colorée le long d’une ligne dans le modèle à six
sommets (lié à l’algèbre sl2). Grâce à une variété de résultats connus sur les
asymptotiques des fonctions de hauteur non-colorées, cela implique une variété
similaire de théorèmes pour la fonction de hauteur colorée de nos modèles.

5. Nous démontrons comment la correspondance colorée/non-colorée dégénère en
versions colorées des modèles «ASEP», «q-PushTASEP» et «q-boson».

6. Nous montrons comment nos fonctions propres sont liées à la théorie non
symétrique de Cherednik-Macdonald, et nous utilisons cette connexion pour
prouver une correspondance probabiliste en appliquant les opérateurs de
Cherednik-Dunkl à l’identité de Cauchy non symétrique.
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CHAPTER 1

INTRODUCTION

1.1. Preface

Exactly solvable models of Statistical Mechanics is a very well developed subject
with an illustrious history that spans Mathematics, Physics, and Chemistry. Its tra-
ditional goals have been analyzing thermodynamic equilibrium in various models of
Statistical Mechanics, like in Onsager’s 1944 solution of the two-dimensional Ising
model [79], see also Baxter’s book [13]; and providing a convenient algebraic formal-
ism for studying integrable systems in Quantum Mechanics in and out of equilibrium,
cf. Jimbo-Miwa’s book [59].

A novel direction has been added in more recent years (although the pioneering work
of Gwa-Spohn [54] goes back to 1992)—applying the same solvability mechanisms to
Markovian systems, that can also be often viewed as models of Statistical Mechanics
from an out-of-equilibrium perspective. Those include certain classes of interacting
particles systems, with the Asymmetric Simple Exclusion Process, or ASEP, as a
ubiquitous example, and directed polymers in random media, with the celebrated
Kardar-Parisi-Zhang (KPZ) stochastic partial differential equation as a representative
example.

The first wave of these Markovian integrable systems started in late 1990s with
the papers of Johansson [60] and Baik-Deift-Johansson [10], and the key to their
solvability, or integrability, was in (highly non-obvious) reductions to what physicists
would call free-fermion models—probabilistic systems, many of whose observables are
expressed in terms of determinants and Pfaffians. (1)

The second wave of integrable Markovian systems started in late 2000s, and their
reliance on the methods developed for integrable models of Statistical and Quantum
Mechanics was much more apparent. For example, looking at the earlier papers of
the second wave we see that: (a) The pioneering work of Tracy-Widom [87, 86, 88] on
the ASEP was based on the famous idea of Bethe [16] of looking for eigenfunctions of

1. The two-dimensional Ising model mentioned above would also be called ‘free-fermion’ in the
physics literature, although it is ‘less solvable’ than the models of [60, 10] and their relatives. Statis-
tical mechanical models of similar level of free-fermion solvability are dimer models with explicitly
known coupling functions.
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2 CHAPTER 1. INTRODUCTION

a quantum many-body system in the form of superposition of those for noninteract-
ing bodies (coordinate Bethe Ansatz); (b) The work of O’Connell [78] and Borodin-
Corwin [21] on semi-discrete Brownian polymers utilized properties of eigenfunctions
of the Macdonald-Ruijsenaars quantum integrable system—the celebrated Macdonald
polynomials and their degenerations; (c) The large time asymptotics of the physics
papers of Dotsenko [48] and Calabrese-Le Doussal-Rosso [35], and a later work of
Borodin-Corwin-Sasamoto [26] was based on a (previously known) duality trick that
shows that certain observables of infinite-dimensional models solve finite-dimensional
quantum many-body systems that are, in their turn, solvable by the coordinate Bethe
Ansatz.

It turned out that all the above examples, as well as many others, can be united
under a single umbrella—integrable stochastic vertex models.

Such a unification was first realized by Corwin-Petrov [43] on the basis of [17]
under the name of stochastic higher spin six vertex model, see [31] for a lecture style
exposition. Its existence was due to the fact that all these models were governed by the
same algebraic structure—the quantum affine group Uq(ŝl2). This was later extended
to the level of the elliptic quantum group Eτ,η(sl2) in [19], [2], which produced dynamic
stochastic vertex models.

The natural next step in the ladder is the quantum groups of higher rank, and
stochastic vertex models corresponding to those have been introduced by Kuniba-
Mangazeev-Maruyama-Okado in [70]. In a certain degeneration, these models repro-
duce multi-species exclusion processes that have been around at least since the 1990s.
A dynamic extension was given by Kuniba in [69].

Of course, one does not just want to define more and more general models; one
wants to analyze their behavior in various large time and space limits and put it in
the framework of universality classes.

For sl2-related models, a few powerful approaches have been developed. Free-
fermionic reductions work well for the models from the first wave and a few of those
from the second wave, see [28] for a survey of the former and [18], [30], [12] for
the latter. Direct analysis of integral representations of the Markov kernels (a.k.a.
transfer-matrices) is sometimes possible, for either the Markovian system itself, like
in [87, 86, 88], or for certain duality functionals (usually the q-moments) that evolve
in time in a similar fashion, like in [26], [22]. Both lead to exact characterization of
the large time behavior in numerous examples. A Plancherel theory for Fourier-like
bases of eigenfunctions of such Markov kernels has been developed in [24], [25], [32],
and derivation of the q-moments from Cauchy (reproducing kernel) identities for such
functions was the central topic of [32], [19]. The q-moments can also be obtained
from the eigenaction of Macdonald difference operators on Macdonald symmetric
polynomials [21], [20].

For the models related to sln+1 with n ⩾ 2, the progress has been much more
modest. The only asymptotic result that we are aware of is a very recent announcement
in [37] of a computation of the probability of two groups of particles of different species
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to completely change their order at large times (the result is also matched to an earlier
prediction by Spohn [83]). Further, to our knowledge, the only algebraic advances
towards possible asymptotics appeared in recent works of Kuan, where for certain
models duality functionals have been constructed (see [65] and references therein)
and integral representations for transfer-matrices have been derived [66]; and in a
paper by Takeyama [84], which contains a combinatorial formula for eigenfunctions
of the Markov kernel for a multi-species q-boson model.

The primary goal of the present work is to advance the analysis of the sln+1-re-
lated stochastic vertex models. We call such models colored, because they consist of
paths of different colors (that correspond to different species, in more conventional
terminology). We concentrate on the rainbow sector, where the colors of all paths are
pairwise distinct—on one hand, it is simpler algebraically, and on the other hand,
rainbow stochastic model collapse onto more degenerate ones by forgetting some of
the color distinctions.

Here are our main results.
• We construct the basis of (rational) eigenfunctions of the colored transfer-matrices
as partition functions of our lattice models with certain boundary conditions. Simi-
larly, we construct a dual basis and prove the corresponding orthogonality relations
and Plancherel formulas. This yields an explicit integral representation of the transfer-
matrices that, in particular, sheds some light on the nature of the integral represen-
tations obtained in [37].
• We derive a variety of combinatorial properties of these eigenfunctions, such as
branching rules, exchange relations under Hecke divided-difference operators, (skew)
Cauchy identities of different types, and monomial expansions. At the particular
value s = 0 of the spin parameter s, the eigenfunctions turn into non-symmetric
Hall-Littlewood polynomials, and, consequently, we call them the non-symmetric spin
Hall-Littlewood functions. We also show that the non-symmetric spin Hall-Littlewood
functions are certain (non-obvious) reductions of the nested Bethe Ansatz eigenfunc-
tions, also known as the weight functions.
• For the colored stochastic vertex model in a quadrant with a domain-wall (or
half-Bernoulli) boundary condition, we prove a matching relation that identifies the
distribution of the colored height function at a point (that encodes the colors of
the paths that pass through or below this point) with the distribution of the height
function along a line in an associated color-blind (sl2-related) stochastic vertex model.
Thanks to a variety of known (proved or conjectural) results about asymptotics of
height functions of the color-blind models, this implies a similar variety of (proved
or conjectural) limit theorems for the colored height function of our models. We also
demonstrate how this colored-uncolored match degenerates to the colored (or multi-
species) versions of the ASEP, q-PushTASEP, and the q-boson model.
• Another matching relation that we prove identifies the one-point distribution of
the colored height function with the multi-point distribution of zeros of compositions
distributed according to an ascending non-symmetric Hall-Littlewood process. This
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is the first appearance of the non-symmetric Cherednik-Macdonald theory in a prob-
abilistic setup, and we make use of it by proving the match by applying Cherednik-
Dunkl operators to the corresponding non-symmetric Cauchy identity.

Let us now describe our results in more detail.

1.2. The model

The vertex models that we consider in the present work assign weights to finite
collections of finite paths drawn on a square grid. Each vertex for which there exists
a path that enters and exits it produces a weight that depends on the configuration
of all the paths that go through this vertex. The total weight for a collection of paths
is the product of weights of the vertices that the paths traverse. (Thus, we tacitly
assume the normalization in which the weight of an empty vertex is always equal
to 1.)

Our paths are going to be colored, i.e.,, each path carries a color that is a number
between 1 and n, where n ⩾ 1 is a fixed parameter. We will usually assume that each
horizontal edge of the underlying square grid can carry no more than one path, while
vertical edges can be occupied by multiple paths. Thus, the states of the horizontal
edges can be encoded by an integer between 0 and n, with 0 denoting an edge that
is not occupied by a path, while the states of the vertical edges can be encoded
by n-dimensional (nonnegative-valued) vectors which specify the number of times
each color {1, . . . , n} appears at that edge. We will also mostly restrict ourselves to
the situation when for each color there is no more than one path of this color in any
path collection; in this case the vectors assigned to vertical edges will be length-n
binary strings.

Our paths will always travel upward in the vertical direction, and in the horizontal
direction a path can travel rightward or leftward, depending on the region of the grid
it is in; this choice will always be explicitly specified.

Vertex weights in the regions of rightward travel are denoted as

Lx,q,s(I, j; K, ℓ) ≡ Lx(I, j; K, ℓ) = j ℓ

I

K

, 0 ⩽ j, ℓ ⩽ n, I,K ∈ {0, 1, 2, . . . }n,

(1.2.1)

where the vectors I = (I1, . . . , In), K = (K1, . . . ,Kn) are chosen such that Ii (resp.,
Ki) gives the number of paths of color i present at the bottom (resp., top) edge of the
vertex. The explicit values of the weights (1.2.1) are summarized in Table 1, where
we assume that 1 ⩽ i < j ⩽ n. Here q is the quantization parameter, s is the spin
parameter, and x is the spectral parameter ; the notation I[k,n] stands for

∑n
a=k Ia.

These weights correspond to the image of the universal R-matrix for the quantum
affine group Uq(ŝln+1) in the tensor product of its vector representation (horizontal
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Table 1.

0 0

I

I

i i

I

I

0 i

I

I−i

1−sxq
I[1,n]

1−sx
(x−sqIi )q

I[i+1,n]

1−sx
x(1−qIi )q

I[i+1,n]

1−sx

i 0

I

I+i

i j

I

I+−ij

j i

I

I+−ji

1−s2q
I[1,n]

1−sx
x(1−qIj )q

I[j+1,n]

1−sx
s(1−qIi )q

I[i+1,n]

1−sx

(1.2.2)

edges) and a Verma module (vertical edges), with the spin parameter encoding its
highest weight. At s = q−

N
2 with N ∈ Z⩾1, it is easy to see that the above weights

will prevent the appearance of vertical edges occupied by more than N paths; in
representation theoretic language this corresponds to finite-dimensional irreducible
quotients of the Verma modules that are equivalent to symmetric powers of the vector
representation. In particular, N = 1 forbids multiple occupation for vertical edges,
and the above weights turn into a version of the Uq(ŝln+1) R-matrix in its defining,
or fundamental, representation.

The key property of the above weights is that they satisfy the Yang-Baxter equation;
we give a detailed account of it in Chapter 2.

A simple gauge transformation

(1.2.3) L̃x(I, j; K, ℓ) := (−s)1ℓ⩾1 · Lx(I, j; K, ℓ)

makes the weights (1.2.1), (1.2.2) stochastic, in the sense that for any fixed states of the
incoming edges, the sum over all possible states of the outgoing edges is always equal
to 1. Thus, if the parameters are chosen so that the modified weights are nonnegative,
they can be viewed as Markovian transition probabilities. A stochastic normalization
of the weights in the sln+1 case first appeared in [70]; in Appendix A, we document
the precise link between our notation and the one used in [65, Section 3.5].
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6 CHAPTER 1. INTRODUCTION

In the regions of leftward travel, we will use a different set of weights denoted as

Mx,q,s(I, j; K, ℓ) ≡Mx(I, j; K, ℓ) = ℓ j

I

K

, 0 ⩽ j, ℓ ⩽ n, I,K ∈ {0, 1, 2, . . . }n,

(1.2.4)

and defined by

Mx−1,q−1,s−1(I, j; K, ℓ) = (−s)1ℓ⩾1−1j⩾1 · Lx,q,s(I, j; K, ℓ).(1.2.5)

The stochastic modification takes the form M̃x(I, j; K, ℓ) := (−s)−1j⩾1 ·Mx(I, j; K, ℓ).

1.3. The transfer-matrix and its eigenfunctions

Consider the total weight (i.e.,, the partition function) for paths that start vertically
in a prescribed configuration, end vertically in another prescribed configuration one
row higher, and can move horizontally (leftward) in between. This can be illustrated
pictorially as

Gµ/ν(x) = x←

· · ·· · ·· · ·B(2)B(1)B(0)

· · ·· · ·· · ·A(2)A(1)A(0)

00.(1.3.1)

Here x is the spectral parameter used for the weights (1.2.4) in this picture,
µ = (µ1, . . . , µn) is a composition of length n, or a string of nonnegative inte-
gers, that gives the starting positions for paths of colors 1, . . . , n, respectively,
ν = (ν1, . . . , νn) is the composition that gives the final positions of the same paths,
and the vectors A(k),B(k) are used to encode µ and ν in the grid:

A(k) =

n∑
j=1

1µj=kej , B(k) =

n∑
j=1

1νj=kej , k ∈ Z⩾0 ,(1.3.2)

with ej denoting the j-th Euclidean unit vector.
The partition function Gµ/ν(x) is the transfer-matrix. As (1.2.3) and (1.2.5) show, it

is simply related to the matrix of transition probabilities for a Markov chain (provided
that the parameters are chosen in such a way that all entries are nonnegative).

Let us now describe our spectral representation of the transfer-matrix.
For a composition µ and n complex parameters x1, . . . , xn, consider another par-

tition function fµ(x1, . . . , xn) corresponding to the picture in Fig. 1. Here A(k)’s
encode µ in the same way as in (1.3.2), and the numbers 1, . . . , n next to rightward
arrows on the left say that paths of colors 1, . . . , n enter through the left boundary
in the 1st, . . . , n-th row, respectively (all horizontal travel is rightward). Further, the
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1.4. PLANCHEREL THEORY 7

fµ(x1, . . . , xn) =

x1 →

x2 →

...

...

xn →

· · ·· · ·· · ·000

· · ·· · ·· · ·A(2)A(1)A(0)

0

0

...

...

0

1

2

...

...

n

(1.3.3)

Figure 1.

symbols x1, . . . , xn say that we use those spectral parameters in the corresponding
rows to compute the weights (1.2.1). The zeros on the bottom and on the right mean
that no paths enter and exit there.

Proposition 1.3.1 (Special case of Proposition 4.5.1). — Assume x1, . . . , xn, y ∈ C are
such that ∣∣∣∣ xi − s

1− sxi
· y − s
1− sy

∣∣∣∣ < 1, for all 1 ⩽ i ⩽ n.(1.3.4)

Then for any composition ν = (ν1, . . . , νn) of length n one has the identity∑
µ

fµ(x1, . . . , xn)Gµ/ν(y) =

n∏
i=1

1− qxiy

q(1− xiy)
· fν(x1, . . . , xn),(1.3.5)

where the summation is taken over all length-n compositions µ = (µ1, . . . , µn).

Equation (1.3.5) shows that fµ’s are algebraic eigenfunctions of the transfer-
matrix Gµ/ν . However, since we are in infinite-dimensional space (with basis
parameterized by compositions of length n), we need some sort of spectral analysis
to have any hope of using fµ’s for studying the Markov evolution. This is precisely
what we explain next.

1.4. Plancherel theory

We need to define functional spaces on which our Fourier-like transform with kernel
fµ(x1, . . . , xn) will act. For the clarity of exposition, we choose the smallest possible
spaces; they could be extended by a natural completion procedure but we will not
pursue this here.
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8 CHAPTER 1. INTRODUCTION

Let Cn denote the space of complex-valued, finitely supported functions on Zn, and
let Ln denote the space of all functions Φ : Cn → C such that (a) Φ(x1, . . . , xn) is
a Laurent polynomial in the variables (xi − s)/(1 − sxi), 1 ⩽ i ⩽ n, and (b)
limxi→∞Φ(x1, . . . , xn) = 0 for all 1 ⩽ i ⩽ n.

We also need the dual functions gµ(x1, . . . , xn), which can be defined as

gµ̃(x−1
n , . . . , x−1

1 ; q−1, s−1) = cµ(q, s)

n∏
i=1

xi · fµ(x1, . . . , xn; q, s), µ̃ = (µn, . . . , µ1),

(1.4.1)

where the multiplicative constant cµ(q, s) is given by

cµ(q, s) =
sn(q − 1)nqinv(µ̃)∏

j⩾0(s
2; q)mj(µ)

, inv(µ̃) = #{i < j : µ̃i ⩾ µ̃j} = #{i < j : µi ⩽ µj},

(1.4.2)

with the standard q-Pochhammer definitions

(a; q)m := (1− a)(1− qa) · · · (1− qm−1a), m ⩾ 1, (a; q)0 := 1,

and with mj(µ) := #{1 ⩽ k ⩽ n : µk = j} for all j ⩾ 0; as well as their alternative
normalization

g∗µ(x1, . . . , xn) := qn(n+1)/2(q − 1)−n · gµ(x1, . . . , xn).

The functions gµ(x1, . . . , xn) can also be constructed as suitable partition functions,
similarly to (1.3.3), cf. (3.4.10) below.

The functions fµ and gµ naturally extend to compositions µ with arbitrary (not
necessarily nonnegative) parts via

fµ+(k,...,k)(x1, . . . , xn) =

n∏
i=1

(
xi − s
1− sxi

)k

fµ(x1, . . . , xn), k ∈ Z,(1.4.3)

and similarly for gµ. One checks that fµ, gµ ∈ Ln for any µ ∈ Zn.
We can now define a forward transform G : Cn → Ln and an inverse transform
F : Cn → Ln as

G[α](x1, . . . , xn) =
∑

µ∈Zn

α(µ)g∗µ(x1, . . . , xn),

F[Φ](µ) =

(
1

2π
√
−1

)n ∮
C1

dx1

x1
· · ·
∮

Cn

dxn

xn

×
∏

1⩽i<j⩽n

xj − xi

xj − qxi
fµ(x̄1, . . . , x̄n)Φ(x1, . . . , xn),

where {C1, . . . , Cn} are closed, pairwise non-intersecting, positively oriented contours
in the complex plane such that they all surround the point s, and the contours Ci

and q · Ci are both contained within contour Ci+1 for all 1 ⩽ i ⩽ n− 1, where q · Ci

denotes the image of Ci under multiplication by q. An illustration of such contours is
given in Figure 11 below (p. 120).
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Theorem 1.4.1 (Theorem 9.4.1 below). — The maps F ◦ G : Cn → Cn and
G ◦ F : Ln → Ln both act as the identity; we have

F ◦G = id ∈ End(Cn), G ◦ F = id ∈ End(Ln).(1.4.4)

Unraveling the first of the relations (1.4.4) shows that {fµ} and {g∗ν} form
biorthonormal bases in Ln, cf. Theorem 8.2.1 below. For versions of Theorem 1.4.1
in the color-blind (sl2-related) case, see [24], [25], [32] and references therein.

As a corollary of Theorem 1.4.1, one obtains a spectral decomposition of the transfer-
matrix:

Gµ/ν(y) =
q−n

(2π
√
−1)n

∮
C1

dx1

x1
· · ·
∮

Cn

dxn

xn
(1.4.5)

×
∏

1⩽i<j⩽n

xj − xi

xj − qxi

n∏
i=1

xi − qy
xi − y

fν(x̄1, . . . , x̄n)g∗µ(x1, . . . , xn).

For µ = (µ1 ⩾ · · · ⩾ µn) and ν = (ν1 ⩽ · · · ⩽ νn) this can be substantially simplified;
see Remark 9.5.2 below, showing a certain connection with the recent work [37].

While Theorem 1.4.1 is easy to state, it was certainly not easy to prove, and un-
derstanding structural properties of the functions fµ is key. Let us summarize some
of these properties.

1.5. Summation identities, recursive relations, monomial expansions

The functions fµ, gµ, and their skew variants (defined as partition functions of the
form (1.3.3), but with possibly nonempty set of paths entering through the bottom
boundary), satisfy a host of summation identities that can be found in Chapter 4
below. One of those identities is (1.3.5) above. Let us reproduce another one of them
here, because of its importance for (1.4.4), and also because it is strikingly similar to
an identity of Mimachi-Noumi for non-symmetric Macdonald polynomials [77].

Theorem 1.5.1. — (Theorem 4.3.1 below) Let (x1, . . . , xn) and (y1, . . . , yn) be two sets
of complex parameters such that∣∣∣∣ xi − s

1− sxi
· yj − s
1− syj

∣∣∣∣ < 1, for all 1 ⩽ i, j ⩽ n.(1.5.1)

Then ∑
µ

fµ(x1, . . . , xn)g∗µ(y1, . . . , yn) =

n∏
i=1

1

1− xiyi

∏
n⩾i>j⩾1

1− qxiyj

1− xiyj
,(1.5.2)

where the summation is over all compositions µ (with nonnegative coordinates).

The similarity with non-symmetric Macdonald polynomials is not a coincidence—
we prove, in Theorem 5.9.4 below, that at the value s = 0 of our spin parame-
ter, the functions fµ coincide with the non-symmetric Macdonald polynomials in the
Hall-Littlewood specialization (Macdonald’s q-parameter vanishes, and Macdonald’s
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t-parameter coincides with our quantization parameter). Furthermore, color-blindness
results of Section 2.4 easily show that if one sums fµ’s over all possible choices of col-
ors of the top outgoing edges (equivalently, one can sum over all compositions µ of
length n whose entries, when ordered, give the same partition), one recovers the sym-
metric spin Hall-Littlewood functions introduced in [17]; this is Proposition 3.4.4 in
the text.

Because of these coincidences, we call our fµ’s the non-symmetric spin Hall-
Littlewood functions.

The connection to non-symmetric Macdonald theory was originally a surprise to us,
largely because, to our best knowledge, the non-symmetric Macdonald polynomials
(with any values of their parameters) were not known to have partition function
representations (2) as in (1.3.3). We establish the connection through the following
two statements.

The first one is the base for a recursion:

Proposition 1.5.2 (Proposition 5.1.1 below). — Let δ = (δ1 ⩽ · · · ⩽ δn) be an anti-
dominant composition. The corresponding non-symmetric spin Hall-Littlewood func-
tion fδ is completely factorized:

fδ(x1, . . . , xn) =

∏
j⩾0(s

2; q)mj(δ)∏n
i=1(1− sxi)

n∏
i=1

(
xi − s
1− sxi

)δi

,(1.5.3)

mj(δ) = #{k ∈ {1, . . . , n} : δk = j}, j ⩾ 0.

The second one is the recursion itself:

Theorem 1.5.3 (A part of Theorem 5.3.1 below). — Let µ = (µ1, . . . , µn) be a length-n
composition with µi < µi+1 for some 1 ⩽ i ⩽ n− 1. Then

(1.5.4) Ti · fµ(x1, . . . , xn) = f(µ1,...,µi+1,µi,...,µn)(x1, . . . , xn),

where

Ti ≡ q −
xi − qxi+1

xi − xi+1
(1− si), 1 ⩽ i ⩽ n− 1,(1.5.5)

with elementary transpositions si ·h(x1, . . . , xn) := h(x1, . . . , xi+1, xi, . . . , xn), are the
Demazure-Lusztig operators of the polynomial representation of the Hecke algebra of
type An−1.

The combination of (1.5.3) and (1.5.4) provides an algorithm for evaluating fµ’s, but
does not yield a closed formula. We offer two rather different formulas for the fµ’s; both
represent them as sums of factorized (monomial) expressions with certain coefficients.
The appearance of factorized monomials in both expansions below follows from (1.5.3).

2. A partition function representation for a different family of non-symmetric polynomials, which
yield symmetric Macdonald polynomials under appropriate symmetrization, was however obtained
in [36].
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The first monomial expression that we give plays a key role in our proof of Theo-
rem 1.4.1.

Theorem 1.5.4 (Combination of Theorem 5.5.1, Theorem 6.7.1, and Proposition 6.7.6
below). — Fix a composition µ, and let δ = (δ1 ⩽ · · · ⩽ δn) and σ ∈ Sn be an
anti-dominant composition and a minimal-length permutation such that µi = δσ(i),
1 ⩽ i ⩽ n. Then

(1.5.6) fµ(x−1
1 , . . . , x−1

n ; q−1, s−1) = s−nq−inv(µ)
n∏

i=1

xi

×
∑

κ∈Sn

∏
1⩽a<b⩽n

xκ(b) − qxκ(a)

xκ(b) − xκ(a)
Zσ

κ (x1, . . . , xn)fδ(xκ(1), . . . , xκ(n); q, s),

where inv(µ) = #{i < j : µi ⩾ µj}, and the coefficients Zσ
κ can be determined

as follows. For any permutation ρ ∈ Sn with further notation ρ̃(i) = n − ρ(i) + 1,
Zσ

ρ̃ (yn, . . . , y1) equals the partition function in a square region of size n × n with
domain wall boundary conditions corresponding to the following picture:

Zσ
ρ̃ (yn, . . . , y1) :=

σ(n) · · · · · · σ(2) σ(1)

0 · · · · · · 0 0

0

...

...

0

0

n

...

...

2

1

yρ(n)

...

...

yρ(2)

yρ(1)

y1 · · · · · · yn−1 yn

(1.5.7)

in which the i-th horizontal line (counted from the top) carries rapidity yρ(i), left
external edge state 0 and right external edge state i, while the j-th vertical line (counted
from the left) carries rapidity yj, bottom external edge state σ(n − j + 1) and top
external edge state 0. Here no edge can be occupied by more than one path, with
the vertex weights summarized in Table 2, where 0 ⩽ i < j ⩽ n, and the spectral
parameter z is equal to the ratio of the rapidities on the vertical and horizontal lines
that cross at the corresponding vertex.

Our second monomial expansion has its origin in the nested Bethe Ansatz. We prove
that the non-symmetric spin Hall-Littlewood functions are appropriate specializations
of the off-shell nested Bethe vectors also known as the weight functions. The special-
izations reduce the number of free variables from n(n+ 1)/2 to n. Combined with a
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Table 2.

i i

i

i

i i

j

j

i j

j

i

1 q(1−z)
1−qz

1−q
1−qz

j j

i

i

j i

i

j

1−z
1−qz

(1−q)z
1−qz

(1.5.8)

known symmetrization formula for the nested Bethe vectors, see [85] and references
therein, we obtain the following statement.

Theorem 1.5.5 (Theorem 7.5.1 below). — Fix a composition µ = (µ1, . . . , µn) and let
δ = (δ1 ⩽ · · · ⩽ δn) be its anti-dominant reordering. Define a vector γ(µ) via

γ(µ) = (γ1, γ2, . . . , γn) = wµ · (1, 2, . . . , n),

where wµ ∈ Sn is the minimal-length permutation such that wµ · µ = δ. Further,
define a sequence of vectors of decreasing lengths by

p(1) = γ(µ), p(i+1) = p(i)\{i}, 1 ⩽ i ⩽ n− 1,

as well as n − 1 strictly increasing integer sequences a(2), . . . , a(n) that, as sets, are
given by a(i) = {1 ⩽ b ⩽ n − i + 2 : p

(i−1)
b ⩾ i}. The non-symmetric spin Hall-

Littlewood functions are given by

fµ(xn, . . . , x1) =
∑

σ(1)∈Sn

· · ·
∑

σ(n−1)∈S2

fδ

(
xσ(1)(1), . . . , xσ(1)(n)

)
×

∏
1⩽i<j⩽n

qxσ(1)(i) − xσ(1)(j)

xσ(1)(i) − xσ(1)(j)

×
n∏

b=2

ψ{
a
(b)
1 ,...,a

(b)
n−b+1

}(σ(b) · (x1, . . . , xn−b+1);σ
(b−1) · (x1, . . . , xn−b+2)

)
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1.6. MATCHING DISTRIBUTIONS 13

×
∏

1⩽i<j⩽n−b+1

qxσ(b)(i) − xσ(b)(j)

xσ(b)(i) − xσ(b)(j)

,

where by agreement σ(n) denotes the trivial permutation σ(n) = (1) ∈ S1, and

ψ{a1,...,am} (x1, . . . , xm; y1, . . . , yM ) =

m∏
i=1

 (1− q)yai

xi − qyai

ai−1∏
j=1

xi − yj

xi − qyj

 , ∀ 1 ⩽ m ⩽M.

While Theorem 1.5.5 is not used in the rest of the work, we view it as an important
bridge between what we do and the more traditional spectral approach to the higher
rank vertex models in finite volume that proceeds through the nested Bethe Ansatz.

1.6. Matching distributions

While we fully expect the spectral representation (1.4.5) and the non-symmetric
spin Hall-Littlewood functions to be effective for asymptotic analysis of colored vertex
models, we do not attempt to do that in the present work. Instead, we focus on
another approach that has been quite successful recently in the case of the color-blind
models, cf. [18], [20], [12]. More concretely, we look for distributional matching of
observables in different models. Surprisingly, we find a matching that allows one to
extract probabilistic and asymptotic information for colored models from that for the
color-blind ones. As the latter ones are well-studied, one can immediately carry over
the known results and conjectures to the colored situation, cf. Section 1.8 below.

Our first matching statement concerns the partition functions associated with the
following pictures:

Ik<· · ·<I1

yM· · · · · ·y1

xN

...

x2

x1

Jℓ

<

...

<

J1
N

2

1

Ik}<· · ·<{I1positions

yM· · · · · ·y1

x1

x2

...

xN

colors {J1, . . . , Jℓ}

The picture on the left is for the partition function in the (stochastic) color-blind
model on an M×N rectangle with no more than one path on each edge, row rapidities
x1, . . . , xN (numbered top-to-bottom), column rapidities y1, . . . , yM (numbered left-
to-right), and vertex weights given by (1.5.8) with n = 1 and with the spectral
parameter z equal to xiyj , where xi and yj are the rapidities of the vertex’s row
and column. The boundary conditions are specified by requiring that paths enter
through every horizontal edge along the left boundary and exit through positions
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14 CHAPTER 1. INTRODUCTION

Figure 2. A simulation of the stochastic colored model in a quadrant
with domain wall boundary conditions (courtesy of L. Petrov).

I = {I1 < · · · < Ik} on the top boundary and positions J = {J1 < · · · < Jℓ} on the
right boundary. We denote this partition function by P6v(I ,J ).

The picture on the right is for the partition function in the (stochastic) colored
model on a similar rectangle with n = N colors, no more than one path on each
edge, row rapidities x1, . . . , xN numbered bottom-to-top, column rapidities y1, . . . , yM

(numbered left-to-right), and vertex weights given by (1.5.8) with n = N and with the
spectral parameter z equal to xiyj , where xi and yj are the rapidities of the vertex’s
row and column. The boundary conditions are specified by requiring that a path of
color i, 1 ⩽ i ⩽ N , enters through the horizontal edge in row i (with rapidity xi) on
the left boundary. We also fix the positions (but not the colors) of the paths that exit
through the top boundary to be given by I , exactly as for the color-blind case, and
we fix colors (but not the positions) of the paths that exit through the right boundary
to be given by J = {J1 < · · · < Jℓ}. We denote this partition function by Pcol(I ,J ).
See Figure 2 for a simulation of the colored model.

Theorem 1.6.1 (Theorem 10.4.1 below). — For any integers M,N ⩾ 1, and two integer
sets I = {1 ⩽ I1 < · · · < Ik ⩽ M} and J = {1 ⩽ J1 < · · · < Jℓ ⩽ N}, the following
equality of distributions holds:

P6v(I ,J ) = Pcol(I ,J ).(1.6.1)

This statement also allows for fusion, leading to multiple paths occupying vertical
edges; see Theorem 12.2.1.

A weaker version of the Result (1.6.1) was previously obtained in [52]. This earlier
result applied to the situation in which M = N , I = {1, . . . , N}, and where the
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1.6. MATCHING DISTRIBUTIONS 15

set J is empty, so that all colored paths exit the partition function Pcol({1, . . . , N}, ∅)
via its top boundary; see Remark 10.4.2.

The weights (1.5.8) are stochastic, which means that the partition func-
tion P6v(I ,J ) can be viewed as the probability, for a Markovian process of
propagating paths that entered through the left boundary, to exit the rectangle at
prescribed locations. Similarly, the partition function Pcol(I ,J ) is the probability
for similarly constructed Markovian colored paths to (a) exit through positions I on
top of the rectangle, and (b) have the set of colors of the paths that exit through the
right boundary equal to J .

The proof of Theorem 10.4.1 that we give is a non-trivial recursive argument (of the
type broadly used in [52, 90]) that may not look particularly illuminating. As a matter
of fact, the way we first encountered this matching went through a correspondence
with a third partition function related to colored Hall-Littlewood processes; let us
define it.

Having two positive integers M,N ⩾ 1, a composition µ = (µ1, . . . , µM ) of
length M , and a Gelfand-Tsetlin pattern (sequence of interlacing (3) partitions)
λ =

{
λ(1) ≻ · · · ≻ λ(N) = ∅

}
of length N − 1, associate to this pair of objects the

weight

WM,N (µ,λ) = Eµ̃(yM , . . . , y1) ·Qµ+/λ(1)(x1) ·
N∏

j=2

Qλ(j−1)/λ(j)(xj) ·
N∏

i=1

M∏
j=1

1− xiyj

1− qxiyj
.

(1.6.2)

Here Q’s are symmetric (skew) Hall-Littlewood polynomials, E’s are non-sym-
metric Hall-Littlewood polynomials, µ+ is the nondecreasing ordering of µ, and
(µ̃1, . . . , µ̃M ) = (µM , . . . , µ1).

For 0 ⩽ xi, yj < 1, this defines a probability measure; the weights (1.6.2) are
nonnegative, and they add up to one:∑

µ

∑
λ

WM,N (µ,λ) ≡ 1.(1.6.3)

This summation follows from the fact that symmetrization of non-symmetric Hall-
Littlewood polynomials yields the symmetric ones, and the Cauchy identity for the
symmetric Hall-Littlewood polynomials.

Define the zero set z(µ) of the composition (µ1, . . . , µM ) as

z(µ) = {1 ⩽ i ⩽M : µi = 0},
and a further set

ζ(µ,λ) = {1 ⩽ j ⩽ N : ℓ(λ(j−1))− ℓ(λ(j)) = 0}, λ(0) ≡ µ+,

which measures the differences between lengths of neighboring partitions in the ex-
tended Gelfand-Tsetlin pattern µ+ ≻ λ(1) ≻ · · · ≻ λ(N−1) ≻ λ(N) = ∅. Further, we

3. We write ν ≻ κ or κ ≺ ν if and only if the partitions ν and κ interlace, i.e.,, ν1 ⩾ κ1 ⩾ ν2 ⩾
κ2 ⩾ · · · .
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16 CHAPTER 1. INTRODUCTION

define (with notation Ī = {1, . . . ,M} \ I )

PcHL(I ,J ) =
∑

µ

∑
λ

WM,N (µ,λ) · 1z(µ)=Ī · 1ζ(µ,λ)=J ,

which is the distribution of the random variables z(µ), ζ(µ,λ) in the pair (µ,λ)

sampled with respect to the colored Hall-Littlewood process (1.6.2).

Theorem 1.6.2 (Theorem 10.5.1 below). — For any integers M,N ⩾ 1, and two integer
sets I = {1 ⩽ I1 < · · · < Ik ⩽ M} and J = {1 ⩽ J1 < · · · < Jℓ ⩽ N}, the following
equality of distributions holds:

P6v(I ,J ) = PcHL(I ,J ).(1.6.4)

Together with Theorem 1.6.1, this also implies

Pcol(I ,J ) = PcHL(I ,J ).(1.6.5)

We give a proof of (1.6.4) by a graphical argument involving the Yang-Baxter
equation. There is also a parallel proof of (1.6.5) that uses graphical arguments and
exchange relations similar to (1.5.4), but we leave it out of this paper. Instead, we
offer a second proof of (1.6.4) based on different ideas. More exactly, using the results
of [61], we compute averages of observables of the colored Hall-Littlewood process by
applying Cherednik-Dunkl operators to a version of the Cauchy summation identity
(1.6.3), match them to the corresponding observables of P6v(I ,J ) (known thanks to
[32, 20]), and prove that the resulting sets of observables are rich enough to identify
the measures. We hope that this approach might be extendable to understanding
joint distributions of colors of paths passing under multiple locations of the lattice
(as opposed to the single vertex (M,N) in the definition of Pcol(I ,J )).

1.7. Matching for interacting particle systems

The distributional match of Theorems 1.6.1 and 12.2.1 can be followed through
various degenerations of the involved stochastic vertex models. In Chapter 12 we give
detailed descriptions of how such degenerations work for three continuous time Markov
chains—the ASEP, a system of q-bosons, and an interacting particle system with
bounded occupancy of each site that generalizes the system known as the PushTASEP
(or long-range TASEP). Let us give a brief description of the ASEP result.

Consider a system of particles on the one-dimensional lattice Z with no more than a
single particle per site. Assume that the particles have colors that are positive integers
(several particles may have the same color, and not all colors need to be utilized).
The empty sites, that are also commonly called holes, can be naturally identified with
particles of color 0, in which case every site of the lattice is occupied by a particle of
a nonnegative color.

The colored ASEP is a continuous time Markov process on the space of such sys-
tems of particles. A (somewhat informal) description of the Markovian evolution is as
follows: each particle is equipped with a left and a right exponential clock of rates q
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1.7. MATCHING FOR INTERACTING PARTICLE SYSTEMS 17

and 1, respectively; all the clocks in the system are independent. When the left (resp.,
right) clock of a particle rings, it checks if the site immediately to the left (resp., right)
of its current location is occupied by a particle of a smaller color. If it is, then these
two particles are swapped, and if not, then nothing happens.

If all particles of the system are of a single color (not counting the holes), then
this evolution reduces to the usual uncolored ASEP. Note that the uncolored ASEP
is also the projection of the colored one when the distinctions between the colors
(apart from 0) are being ignored. More generally, one can always reduce the number
of colors in the colored ASEP by ignoring distinctions between colors in any interval. If
particles of only two nonzero colors are present in the system, then the particles of the
smaller color behave as second class particles, in the conventional ASEP terminology.

We will be concerned with the (half-)Bernoulli initial condition (at time t = 0)
defined as follows. Choose p ∈ (0, 1], and for each i = 1, 2, . . . , place a particle of color
i at location (−i) with probability p, independently over all i. For p = 1 all the sites
−1,−2, . . . are going to be occupied by particles of colors 1, 2, . . . , respectively. We
refer to the latter case as the step initial condition.

Let us now state the matching result.
Fix an arbitrary integer P (reference position) and two sets of pairwise distinct

integers I = {I1 < · · · < Ik ⩽ P} and J = {1 ⩽ J1 < · · · < Jℓ}. Consider the
following probabilities:

PASEP(I ,J ;P, t) = Prob

{
there is a particle at each of
the locations I1, . . . , Ik;P + J1, . . . , P + Jℓ

}
,

PmASEP(I ,J ;P, t) = Prob


there is a particle at each of the locations I1, . . . , Ik,
and there is a particle of each of the colors J1, . . . , Jℓ

to the right of location P

 .

Theorem 1.7.1 (Theorem 12.3.5 below). — Consider the colored ASEP with the half-
Bernoulli initial condition, as defined above. Then for all time t ⩾ 0, any integer
P ∈ Z, and arbitrary integer sets I = {I1 < · · · < Ik ⩽ P} and J = {1 ⩽ J1 < · · · < Jℓ},
we have

PASEP(I ,J ;P, t) = PmASEP(I ,J ;P, t).

One can show that in the case of step initial condition (p = 1) and I = ∅, Theo-
rem 1.7.1 also follows from [7, Theorem 1.4]. This does not seem to extend to arbi-
trary p and I , however.

Matching results for the colored q-bosons and the PushTASEP-like colored system
that are somewhat similar to Theorem 1.7.1, and that are also derived from the vertex
model matching of Theorems 1.6.1 and 12.2.1, are given in Sections 12.4–12.5 below
(see Theorems 12.4.2 and 12.5.2, respectively).
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1.8. Asymptotics

The matching of Theorem 1.6.1 and its extensions gives rise to a host of asymptotic
statements for the colored models via the corresponding asymptotics of the color-blind
ones. Let us survey the latter ones very quickly.

It is convenient to speak in terms of the height functions that count the number of
paths/particles to the right (or left) of a given location in the two-dimensional space
time. For colored models, one can speak of a colored height function that counts the
number of paths/particles to the right of a specified location, but only takes into
account paths/particles whose color does not exceed a certain cut-off. This turns
the height function into a random function of three variables rather than two. The
matching statements thus provide identities between the distributions of the colored
height functions on certain one-dimensional sections of the three-dimensional physical
space, and those of the uncolored height functions on one-dimensional sections of the
two-dimensional physical space.

The large time/space/color asymptotics for the models considered in the present
work can be of (at least) four different types; in terms of the color-blind models, they
correspond to:

1. A local limit regime with observed space locations at finite distance from each
other and the limiting object typically being a product of Bernoulli measures or
their generalization (local equilibrium).

2. Global Gaussian random field asymptotics with observation points ranging over
the whole active region of the physical space, in the case of symmetric models
(q = 1), or weakly asymmetric ones (q → 1) with relatively small, but still
diverging scaling of space/time.

3. In the weakly asymmetric case, intermediate space/time scaling and appropriate
mesoscopic distances between observation points yield limiting random polymers
in random media, e.g.,, the KPZ equation.

4. In the asymmetric case (q ̸= 1 is fixed), or the weakly asymmetric case at
large scales, mesoscopic distances between observation points produce a broadly
universal limiting object known as the KPZ fixed point.

Note that in order to use the matching for deriving a non-trivial colored result from
an uncolored one, one needs to know process level convergence of the uncolored height
function as the one-point distributions match trivially. This substantially reduces the
number of rigorously known results; there are, however, widely believed conjectures
and heuristic arguments wherever the one-point convergence is known.

For (1), the very first result is the behavior of the particle of color 1 in the colored
TASEP, and our matching result says that it is asymptotically equivalent to the
color-blind TASEP density. This is a celebrated result of Ferrari-Kipnis [51] about
the second class particle in a rarefaction fan. Its extensions to many colors for the
ASEP with step initial condition have been investigated by Amir-Angel-Valko [7] via
a matching result that is not far from (the ASEP degeneration of) ours. For a single

ASTÉRISQUE 437



1.10. ACKNOWLEDGMENTS 19

second class particle, a recent work by Balázs-Nagy [11] proves results for more general
(continuous time) processes, again by a suitable matching.

For (2), the asymptotic behavior of the uncolored height function is a deterministic
law of large numbers (hydrodynamic limit) given by a first order PDE, and Gaussian
fluctuations around it are given by a solution of a stochastic PDE that is a classical
second order PDE with a white noise inhomogeneity, cf. De Masi-Presutti-Scacciatelli
[45], Dittrich-Gärtner [47], Borodin-Gorin [29], Shen-Tsai [81] and references therein.
No colored results or conjectures have been previously known.

For (3), the uncolored height function converges to the logarithm of the partition
function for a finite temperature directed polymer in a Gaussian random medium, see,
Bertini-Giacomin [15] and [8] for the ASEP and the continuum polymer (equivalently,
the KPZ equation), Borodin-Corwin [21] for the q-TASEP and the O’Connell-Yor
(semi-discrete) polymer, Corwin-Tsai [44] and Corwin-Ghosal-Shen-Tsai [42] for the
stochastic six vertex and the continuum polymer. No colored results or conjectures
have been previously known.

For (4), only for the TASEP and PushTASEP (as well as for a few closely related,
determinantal models) process level convergence results have been rigorously estab-
lished, cf. Borodin-Ferrari [27], Matetski-Quastel-Remenik [75]; conjectures, however,
are broadly available, cf. Corwin [40], Spohn [82], Corwin-Dimitrov [41]. No colored
results have been previously known. The only available colored predictions have been
made by Spohn [83], but it remains unclear whether they are applicable to any of the
models covered by our matchings.

It would be extremely interesting to access any of the outlined asymptotic results
without employing the matching, but rather through utilizing the spectral analysis of
the transfer-matrices described above. We leave this to a future work.

1.9. A word about extensions

The algebraic formalism of the present work should be readily extendable to:
— Inhomogeneous lattice models, similarly to what was done in [32] in the color-

blind case;
— The spin q-Whittaker functions, similarly to what was done in [33] in the color-

blind case;
— Elliptic and trigonometric IRF (Interaction-Round-a-Face) or SOS (Solid-On-

Solid) models, similarly to what was done in [19], [2] in the color-blind case.
We chose to leave these more general scenarios out of the scope of this paper that,

as it is, ended up pretty long.
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