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INTRODUCTION 

Let k  b e a field and let A b e a commutative k-algebr a generate d by 

some finit e set H = {x-j,... ,x } c A. A s a vectorspace, A  wil l of course 

admit as basis a set of monomials in the x-j,...,x n, thoug h thi s set is far 

from unique. I t is even possible to arrange H  i n such a way that this 

basis set can be taken to be the complement of an ideal Z o f monomials (see 

section 1 for a precise definition), so that A  ha s a basis in 1- 1 corres -

pondence with the natural monomia l basi s of a ring of the form 

A Q = k[x1,...,x n]/I, 

where I  i s generated by the monomials Z i n the variables x^,..., x , but 

in general the relation between A  an d A Q will be very slight. 

In this paper we consider an additional conditio n on z, H, and A, which 

slightly limit s the multiplication in A , i n terms of a partial orde r on H 

(Section 1) ; if the condition is satisfied, we say that A  i s a Hodge  

Algebra, governed by Z. I f this condition is satisfied, then (among other 

things) the relation between A  an d A Q becomes ver y precise: A  is , in a 

very special way , the "general fiber " of a flat deformation whose specia l 

fiber is A Q , S O that many properties of A Q ma y be transferred to A 

(Section 3) . Thu s when A  i s a Hodge algebra governed by some "good" Z, 

many properties of A  ca n be read off directly. 

Many interestin g examples tur n out to be Hodge 

algebras governe d by "good" ideals Z, s o results of the above typ e may be 

used to unify and extend a large amount of information about difficult con-

crete examples, such as coordinate ring s of Grassmannians and certain 
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generalized Grassmannians, flag manifolds, Schubert varieties, determinantal 

and Pfaffian varieties, varieties of minimal degree , and varieties of com-

plexes. 

History 

The first explicit description of an interesting algebra via a basis 

of monomials and relations of our type that we know of is Hodge's stud y of 

the Grassmann variet y and Schubert cycles [Hodg e ] , undertaken with a view 

to obtaining explici t "postulation formulas" (in modern terms, the Hilbert 

functions of the homogeneous coordinate rings) ; the results are presented in 

a relativel y readabl e way at the end ot volume 2 of [Hodge-Pedoe ] . I t is 

because of this, following a suggestion of Laksov, that we have called the 

algebras here "Hodg e Algebras". Igusa , in [Igusa (1) ] also exploited what is 

in fact a Hodge-algebra structure in proving the projective normality of the 

Grassmann variety. Th e next occurrence we know of is the "straightening law" 

of [Doubilet - Rota-Stein ] ; this was re-proved in [De Concini-Procesi ] 

and [De Concini-Eisenbud-Procesi ] , where it is shown that this 

"straightening law " may be deduced in a simple way from the Hodge structur e 

on the coordinate rin g of the Grassmann variety. Afte r [De Concini-Eisenbud-

Procesi ]  was written, we made, at the suggestion of David Buchsbaum, a 

study of the relation between the Doubilet-Rota-Stein "straightenin g law" 

and the proof of the Cohen-Macaulayness of the Schubert cycles and determi-

nantal varietie s foun d in [Musili ] ; it was from this that the axioms for 

a Hodge algebra, in the special cas e called an "ordinal Hodg e algebra" below, 

emerged (Musili' s motivating proof, in our axiomatic form , is given in Sec-

tion 8). Thi s material was worked out by us in 1978, and a manuscript was 

then circulated ; it is summarized in [Eisenbud ] . 
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