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INTRODUCTION

Let k be a field and let A be a commutative k-algebra generated by
some finite set H = {x],...,xn} c A. As a vectorspace, A will of course
admit as basis a set of monomials in the XpseeesXos though this set is far
from unique. It is even possible to arrange H in such a way that this
basis set can be taken to be the complement of an ideal £ of monomials (see
section 1 for a precise definition), so that A has a basis in 1-1 corres-

pondence with the natural monomial basis of a ring of the form

AO = k[X],--~sxn]/Ia

where I is generated by the monomials £ 1in the variables XpoeeeaXs but
in general the relation between A and A0 will be very slight.

In this paper we consider an additional condition on £, H, and A, which
slightly limits the multiplication in A, in terms of a partial order on H
(Section 1); if the condition is satisfied, we say that A is a Hodge
Algebra, governed by £. If this condition is satisfied, then (among other
things) the relation between A and A0 becomes very precise: A 1is, in a
very special way, the "general fiber" of a flat deformation whose special
fiber is AO’ so that many properties of A0 may be transferred to A
(Section 3). Thus when A 1is a Hodge algebra governed by some "good" =,
many properties of A can be read off directly.

Many interesting examples turn out to be Hodge
algebras governed by "good" ideals I, so results of the above type may be

used to unify and extend a large amount of information about difficult con-

crete examples, such as coordinate rings of Grassmannians and certain
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generalized Grassmannians, flag manifolds, Schubert varieties, determinantal
and Pfaffian varieties, varieties of minimal degree, and varieties of com-

plexes.

History

The first explicit description of an interesting algebra via a basis
of monomials and relations of our type that we know of is Hodge's study of
the Grassmann variety and Schubert cycles [Hodge ], undertaken with a view
to obtaining explicit "postulation formulas" (in modern terms, the Hilbert
functions of the homogeneous coordinate rings); the results are presented in
a relatively readable way at the end ot volume 2 of [Hodge-Pedoe ]. It is
because of this, following a suggestion of Laksov, that we have called the
algebras here "Hodge Algebras". Igusa, in [Igusa (1)] also exploited what is
in fact a Hodge-algebra structure in proving the projective normality of the
Grassmann variety. The next occurrence we know of is the "straightening Taw"
of [Doubilet - Rota-Stein ]; this was re-proved in [De Concini-Procesi ]
and [De Concini-Eisenbud-Procesi ], where it is shown that this
"straightening law" may be deduced in a simple way from the Hodge structure
on the coordinate ring of the Grassmannvariety. After [De Concini-Eisenbud-
Procesi ] was written, we made, at the suggestion of David Buchsbaum, a
study of the relation between the Doubilet-Rota-Stein "straightening law"
and the proof of the Cohen-Macaulayness of the Schubert cycles and determi-
nantal varieties found in [Musili ]; it was from this that the axioms for
a Hodge algebra, in the special case called an "ordinal Hodge algebra" below,
emerged (Musili's motivating proof, in our axiomatic form, is given in Sec-
tion 8). This material was worked out by us in 1978, and a manuscript was

then circulated; it is summarized in [Eisenbud 1.



