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ON THE LONG TIME BEHAVIOR OF KDV TYPE EQUATIONS

[after Martel-Merle]

by Nikolay TZVETKOV

1. INTRODUCTION

A central problem in the theory of dispersive PDE’s is to understand the interplay

between nonlinearity and dispersion. In the context of the water waves problem (see

e.g. [1]) the Korteweg-de Vries (KdV) equation

(1) ut + uxxx + ∂x(u2) = 0, x ∈ R

appears to be the simplest (asymptotic) model where both dispersive and nonlinear

effects are taken into account. If we neglect the nonlinear interaction ∂x(u2) we deal

with the Airy equation

(2) ut + uxxx = 0.

The solutions of (2) are known to “disperse” in the sense that every solution u of (2)

issued from L1(R) ∩ L2(R) initial data u(0, ·), has its L2 mass conserved but

lim
t→∞

‖u(t, ·)‖L∞(R) = 0.

If we neglect the dispersive term uxxx, we deal with the Burgers equation which

is known to develop singularities in finite time, even for smooth initial data. The

KdV equation (1) displays a balance between dispersion and nonlinearity since the

dynamics of (1) is well defined, globally in time, for a very large class of initial data

and moreover the solutions of (1) enjoy a rich dynamics as t → ∞. A very special

role among the solutions of (1) is played by the so-called solitary wave solution

(3) uc(t, x) = Qc(x− ct) =
3c

2
ch−2

(√c
2

(x− ct)
)
, c > 0.

The solution (3) does not disperse and represents the displacement of the profile Qc
with speed c from left to right as the time t increases. Using the inverse scattering

method (see [16, 29, 58]), it turns out that for sufficiently large t, any solution of

(1) issued from well localized smooth initial data decomposes as a sum of solitary
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waves of type (3) plus a radiation term moving in the opposite direction. A natural

generalization of (1), with stronger nonlinear effects, is the equation

(4) ut + uxxx + ∂x(up) = 0,

where p is a positive integer. The case p = 3 (modified KdV) is a very special case

since, as in the case of (1), it can be treated with the inverse scattering method.

Unfortunately, the integrability machinery does not seem to apply anymore for the

equation (4) when p 6= 2, 3. Therefore the qualitative study of (4) in these cases is

much less understood.

The equation (4) is a Hamiltonian PDE and its solutions enjoy, at least formally,

the conservation laws

(5) ‖u(t, ·)‖L2 = ‖u(0, ·)‖L2

and

(6)
1

2
‖ux(t, ·)‖2L2 − 1

p+ 1

∫ ∞

−∞
up+1(t, x)dx =

1

2
‖ux(0, ·)‖2L2 − 1

p+ 1

∫ ∞

−∞
up+1(0, x)dx.

Using the Gagliardo-Nirenberg inequalities

‖u(t, ·)‖p+1
Lp+1(R) 6 C‖u(t, ·)‖(p+3)/2

L2(R) ‖ux(t, ·)‖(p−1)/2
L2(R) ,

we deduce from (5) and (6) that, for p < 5, the H1 norm of u(t, ·) is bounded

independently of t as u(0, ·) ∈ H1(R). Consequently, the H1 local well-posedness

result of Kenig-Ponce-Vega [27] implies the existence of well-defined global dynamics

of (4), for p < 5, in the energy space H1(R).

If p > 5, the H1 local well-posedness result of Kenig-Ponce-Vega still applies (see

Theorem 2.1 below) but the conservation laws (5), (6) provide no longer an H1 control

and hence solutions developing singularities in finite time may appear. The existence

of such solutions has been a long standing open problem. In the case p = 5, this

problem has been solved by Martel-Merle in a series of recent papers. The goal of

this exposé is to discuss the main ideas developed by Martel-Merle, together with a

presentation of previously known closely related results. One can extract from the

results of Martel-Merle the following statement.

Theorem 1.1 (Martel-Merle [35, 44, 36, 37]). — Let p = 5. There exists u0 ∈
H1(R) such that the local solution of (4) with initial data u0 blows up in finite time.

More precisely there exists T > 0 such that limt→T ‖u(t, ·)‖H1(R) =∞.

We refer to section 8 below for a more precise statement. Let us make a comment

on the choice of the initial data u0. Equation (4) still has solutions of type (3).

Namely, the solitary waves of (4) have the form uc(t, x) = Qc(x − ct), c > 0 with

Qc(x) = c1/(p−1)Q(
√
cx) and

Q(x) =
[ p+ 1

2 ch2
(
p−1
2 x

)
]1/(p−1)

.
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The crux of the Martel-Merle analysis is the deep understanding of the flow of (4)

close to a solitary wave. It turns out that the solutions developing singularities in

finite time constructed by Martel-Merle are issued from initial data close to Q(x) and

are essentially of the form Qc(t)(x+ x(t)) with c(t)→∞ as t→∞.

The study of solutions of PDE’s developing singularities in finite time is an active

research field. Let us briefly recall a few of the existing results and compare them

with the analysis in the context of (4). In the case of semi-linear wave equations,

due to the “finite propagation speed”, the blow-up dynamics can be approximated by

an ODE developing singularities in finite time (see [2] and the references therein).

In the case of quasi-linear wave equations, a Burgers type behavior is behind the

blow up dynamics (see [15] and the references therein). The equation (4) does not

enjoy similar finite propagation speed properties and the qualitative study of (4)

offers new features. Probably the closest models to (4) are the nonlinear Schrödinger

equations (NLS). In the case of NLS, we have a functional (viriel functional) giving

a simple obstruction for the existence of global dynamics (see [59] and the references

therein). A similar functional is not known to exist in the context of (4). Due to a

conformal invariance(1) of some Nonlinear Schrödinger equations, one can construct

explicit blow-up solutions (see [41, 43, 60]). Similar invariance is not known in the

context of (4).

The rest of this text is organized as follows. In the next section we recall some

basic facts on the Cauchy problem for (4). Next, we recall results on the stability of

the solitary waves for (4). Starting from section 4, we concentrate on the case p = 5.

In section 4, we present a characterization of the solitary waves among the solutions

with data close to the profile Q. Then, in sections 5 and 6, we present two applications

of that characterization result. Section 5 is devoted to an asymptotic stability result

while in section 6 we present a result showing the existence of solutions blowing up in

finite or infinite time. The last two sections are devoted to the existence of solutions

blowing up in finite time. In section 7, we present a result on the blow-up profile

which is essential to prove the blow-up in finite time. Section 8 is devoted to the

argument providing finite-time blow-up solutions. Finally, in section 9 we present

some remarks and open problems.

Acknowledgments. — It is a pleasure to thank Anne de Bouard, Khaled El Dika and

Jean-Claude Saut for many valuable discussions on the subject. I am also indebted

to Anne de Bouard, Laurent Clozel, Yvan Martel and Frank Merle for their remarks

on previous versions of this text.

(1)The viriel functional is a consequence of that invariance too.
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2. THE CAUCHY PROBLEM

In this section, we collect some preliminary results on the Cauchy problem
{
ut + uxxx + ∂x(up) = 0,

u(0, x) = u0(x),
(7)

where p > 1 is an integer. The following theorem(2), which can be extracted from the

work of Kenig-Ponce-Vega [27], is the starting point for the study of (7) in H1.

Theorem 2.1 ([27]). — For every u0 ∈ H1(R), there exist T ∈ ]0,+∞], bounded

from below by a positive constant which only depends on ‖u0‖H1 , and a func-

tional space XT continuously embedded in C([0, T ] ; H1(R)) such that the Cauchy

problem (7) has a unique maximal solution u ∈ XT . Moreover, if T < +∞ then

limt→T ‖u(t, ·)‖H1 =∞.

Of course, a similar statement holds for negative times t. One can also prove the

local well-posedness of (7) in Hs for suitable s < 1. This fact plays an important

role in the Martel-Merle work. For example, it is used to prove that the flow enjoys

a continuity property with respect to the weak H1 topology.

Let us give some indications on the proof of Theorem 2.1 in the case p = 5. The

proof of the other cases follows similar lines. In the case p = 5, one can prove that (7)

is well-posed for data in Hs, s > 0. The proof is based on applying the contraction

mapping principle to the integral formulation (Duhamel principle) of (7)

(8) u(t) = S(t)u0 −
∫ t

0

S(t− τ)∂x(up(τ))dτ.

In (8), S(t) = exp(−t∂3
x) is the generator of the free evolution. This is the operator

of convolution with respect to x with (3t)−1/3 Ai(x(3t)−1/3), where Ai is the Airy

function. Let us recall that the Airy function is exponentially decaying on the right

and it decays as |x|−1/4 on the left (see e.g. [24]). Using the smoothing properties of

S(t) one can prove (see [27, Corollary 2.11]) that for u0 ∈ H1, the right-hand side of

(8) is a contraction in a suitable ball of the space XT of functions defined on [0, T ]×R,

equipped with the norm

‖u‖XT = ‖u‖L∞
T H

s
x

+‖Ds
x u‖L5

x L
10
T

+‖Ds/3
t u‖L5

x L
10
T

+‖Ds
x ux‖L∞

x L2
T

+‖Ds/3
t ux‖L∞

x L2
T
.

The argument relies on some methods from harmonic analysis (restriction phenomena,

maximal function estimates, etc.). In the case s = 0 the argument breaks down.

However, in that case we are able to insure the contraction property, if ‖u0‖L2 is

small enough. Therefore, if p = 5, the equation (4) is L2-critical.

(2)We refer to [56, 7, 25, 21] for earlier results on the well-posedness theory of (7).

ASTÉRISQUE 299



(933) ON KDV TYPE EQUATIONS 223

Another very important aspect in the study of (7) is the Kato smoothing effect (see

[25]). Let ϕ ∈ C3(R) be bounded with all its derivatives. If u is a solution of (4) then,

multiplying (4) with ϕu and integrating by parts, we obtain the formal(3) identity

(9)
d

dt

∫ ∞

−∞
u2(t)ϕ = −3

∫ ∞

−∞
u2
x(t)ϕ′ +

∫ ∞

−∞
u2(t)ϕ(3) +

2p

p+ 1

∫ ∞

−∞
up+1(t)ϕ′.

Note that, if ϕ is increasing then the first term in the right-hand side of (9) is negative.

This fact was used by Kato [25] to show a remarkable local smoothing effect for

(7), if p < 5. Namely the solution turns out to be one derivative smoother than

the data, locally in space. In [25] well-posedness results in weighted Sobolev spaces

are also obtained. The article of Kato was a great source of inspiration for many

further works on the subject. It is also the case in the papers by Martel-Merle. For

example, the crucial monotonicity properties (see section 5 below) are strongly related

to identity (9).

3. STABILITY AND INSTABILITY OF THE SOLITARY WAVES

The initial data giving rise to blow-up solutions in the work of Martel-Merle belong

to a small neighborhood of the function Q(x) which is the initial data for a solitary

wave. Thus the question of long time stability (or instability) of the solution Q(x− t)
of (4) is closely related to Martel-Merle analysis. This question has a long history

starting from the pioneering work of Benjamin [4]. The aim of this section is to briefly

summarize the state of the art on the stability of Q(x− t). Similar discussion is valid

for the solitary wave Qc(x− ct) (recall that Q = Q1).

Let us first notice that there exist data for (4) arbitrary close to Q(x) such that

the corresponding solution does not stay close to Q(x − t) for long times. This is

clearly the case of Qc(x) with c close but different from 1. Indeed, if c is close to 1

then Q(x) is close to Qc(x), but, because of the different propagation speed, Q(x− t)
and Qc(x− ct) separate from each other for t≫ 1.

Notice however that in the previous example the solution issued from Qc remains

close to spatial translates of Q. Hence this example does not exclude orbital stability

of Q (up to the action of the group of spatial translations). Indeed, it turns out that

for p < 5 the solution Q(x− t) is orbitally stable under small H1 perturbations. Here

is the precise statement.

Theorem 3.1. — Let p < 5. For every ε > 0 there exists δ > 0 such that if the

initial data of (7) satisfies ‖u0 −Q‖H1 < δ then there exists a C1 function x(t) such

(3)The rigorous justification for sufficiently “nice solutions” u can be obtained by approximation

arguments thanks to a propagation of regularity property of the local flow of (7).
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