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ON CRAMÉR’S THEORY
IN INFINITE DIMENSIONS

Raphaël Cerf
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ON CRAMÉR’S THEORY
IN INFINITE DIMENSIONS

Raphaël Cerf

Abstract. — This text is a self–contained account of Cramér’s theory in infinite di-
mensions. Our point of view is slightly different from the classical texts of Azencott,
Bahadur and Zabell, Dembo and Zeitouni, Deuschel and Stroock. We have been try-
ing to understand the relevance of the topological hypotheses necessary to carry out
the core of the theory. We have also drawn some inspiration from the analogy between
the large deviation proofs in statistical mechanics and for i.i.d. random variables.

Résumé (La théorie de Cramér en dimension infinie). — Ce texte est un exposé au-
tonome de la théorie de Cramér en dimension infinie. Le point de vue est légèrement
différent des textes classiques d’Azencott, de Bahadur et Zabell, de Dembo et Zei-
touni, et de Deuschel et Stroock. Nous avons essayé de comprendre la pertinence
des hypothèses topologiques nécessaires pour faire fonctionner le cœur de la théorie.
Nous avons également exploité l’analogie entre les preuves de grandes déviations en
mécanique statistique et pour des variables aléatoires i.i.d.
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ACKNOWLEDGEMENTS

I warmly thank Alano Ancona for his guidance in the realm of topological vector
spaces. I thank Ismael Bailleul, Cathy Maugis, Pierre Petit and an anonymous referee
for their many comments on this text. I thank all the students of Orsay whom I taught
large deviations.
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CHAPTER 1

INTRODUCTION

One of the most famous results in probability theory is the law of large numbers.
For n ≥ 1, letX1, . . . , Xn be n independent identically distributed real–valued random
variables with mean m, and let Sn be their empirical mean, given by

Sn =
1
n

(X1 + · · · +Xn) .

The weak law of large numbers asserts the convergence in probability of Sn towardsm:

∀ε > 0 lim
n→∞P

(∣∣Sn −m
∣∣ > ε

)
= 0 .

One starts usually to prove the law of large numbers for square integrable or even
bounded random variables. In this situation, the weak law of large numbers is a
straightforward consequence of the Bienaymé–Tchebytcheff inequality:

∀ε > 0 P
(∣∣Sn −m

∣∣ > ε
) ≤ 1

ε2
var

(
Sn

)
=

σ2

nε2
,

where σ2 = E
(
(X1−m)2

)
is the common variance of the random variablesX1, . . . , Xn.

This inequality controls at once the probability of all the values which are outside a
neighborhood of the mean. Yet we would like to have a strategy to prove laws of
large numbers which works in more complicated situations. We have mainly two
directions of generalization in mind, the infinite dimensional setting and the case of
strongly dependent random variables. Large deviations provide a unified language to
attack these questions. Let us illustrate the strategy of a large deviation proof in the
above case. For simplicity, we consider the case where the random variables take their
values in [0, 1] and their common expectation is 1/2. For n ≥ 1, the empirical mean
Sn takes its values in the compact space [0, 1]. For any x ∈ [0, 1], we will estimate the
asymptotics of the probability that Sn belongs to a neighborhood of x. It will turn out
that, except when x is equal to the mean 1/2, the probability P (x− ε < Sn < x+ ε)
decays exponentially fast like exp−cn (with c > 0 when ε is sufficiently small) as n
goes to ∞. Since [0, 1] is compact and since Sn has to be somewhere in [0, 1], it will
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be close to 1/2 with probability going exponentially fast to 1 as n goes to ∞. Let us
be more precise. For any interval U included in [0, 1], for n,m ≥ 1, using successively
the convexity of U and the fact that X1, . . . , Xn+m are independent and identically
distributed, we have

P (Sn+m ∈ U) ≥ P
( 1
n

(
X1 + · · · +Xn

) ∈ U,
1
m

(
Xn+1 + · · · +Xn+m

) ∈ U
)

≥ P
( 1
n

(
X1 + · · · +Xn

) ∈ U
)
P
( 1
m

(
Xn+1 + · · · +Xn+m

) ∈ U
)

= P (Sn ∈ U)P (Sm ∈ U) .

Therefore the sequence − lnP (Sn ∈ U), n ≥ 1, is subadditive. By the famous subad-
ditive lemma, the limit

lim
n→∞ − 1

n
lnP

(
Sn ∈ U

)
exists for any interval U included in [0, 1]. The Cramér transform of the common law
of X1, . . . , Xn is the map I : [0, 1] → [0,+∞] defined by

∀x ∈ [0, 1] I(x) = sup
ε>0

lim
n→∞ − 1

n
lnP (x− ε < Sn < x+ ε) .

A remarkable feature of Cramér’s theory is that I can be explicitly identified: it is the
Fenchel–Legendre transform of the Log–Laplace of the law of X1. The map I is the
rate function governing the large deviations of the empirical mean Sn. The constant
c characterizing the exponential decay of P (x − ε < Sn < x + ε) is equal to I(x);
roughly speaking, the large deviations principle says that, for E a subset of [0, 1],

P
(
Sn ∈ E

) ln∼
n→∞ exp

(
− n inf { I(x) : x ∈ E

})
.

Large deviations provide a bridge between probability theory and the calculus of
variations: the estimation of the probability P

(
Sn ∈ E

)
boils down to the study

of the variational problem inf { I(x) : x ∈ E
}
. The hard part of the work is now to

prove that I vanishes only at 1/2. Indeed, if this was proved, we would have then
inf [0,1]\U I > 0 for any neighborhood U of 1/2, whence, by the previous principle,

lim
n→∞P

(
Sn ∈ U

)
= 1 .

This way, we recover not only the weak law of large numbers, but we obtain also the
correct speed of decay of the probability P

(
Sn �∈ U

)
, which is of order exp−cn (with

c > 0). The understanding of the structure of the minima of I requires probabilistic
estimates specific to the model under study. The scheme of proof we have described
is quite robust and can be considerably generalized in the two directions alluded
before. It is a quite natural desire to try to generalize Cramér’s theory in infinite
dimensions. Beyond the mere pleasure of getting abstract and elegant formulations,
such generalizations do have very useful applications. Let us mention two of them.

PANORAMAS & SYNTHÈSES 23



1.1. THE ISING CURIE–WEISS MODEL 3

Cramér’s theorem in a separable Banach space. — This sounds still quite ab-
stract. Yet this result yields for instance a large deviation principle for the Minkowski
average of random sets in finite dimensional spaces [Cer99], or for random functions
[Ter06]. This result yields also a large deviation principle for Gaussian measures and
in particular Schilder’s theorem for the Brownian motion (see chapter 22). Schilder’s
theorem is the very starting point for the beautiful Freidlin–Wentzell theory of random
perturbations of dynamical systems [FW84].

Sanov’s theorem. — A central problem in statistics is to estimate an unknown
law µ from the observation of an i.i.d. n–sample X1, . . . , Xn. A natural try is to
consider the empirical measure Mn defined by

Mn =
1
n

(δX1 + · · · + δXn) .

Even if the law µ is defined on a finite dimensional space, the above measure belongs to
the infinite dimensional space M(E) of the signed measures on E. Sanov’s theorem is
a large deviation principle for the random measureMn, which holds in great generality.
This large deviation principle can be obtained as an application of the general Cramér
theory.

However, the most challenging direction is to leave the independent framework. To
introduce stochastic dependence, we start with i.i.d. random variables and we define
a new joint law with the help of a density factor.

1.1. The Ising Curie–Weiss model

Let us consider the state space Ωn = {−1,+1}n. We define the following random
variables on Ωn: for ω = (ω1, . . . , ωn) ∈ Ωn, we set

∀i ∈ { 1, . . . , n } Xi(ω) = ωi

and we consider the empirical mean

Sn =
1
n

(X1 + · · · +Xn) .

Let T > 0. We define a probability measure µn,T on Ωn by

∀ω ∈ Ωn µn,T (ω) =
1

Zn,T
exp

(
− 1
nT

∑
1≤i,j≤n

Xi(ω)Xj(ω)
)

=
1

Zn,T
exp

(
− n

T
Sn(ω)2

)
.

Here Zn,T is the normalizing factor which ensures that µn,T (Ωn) = 1. The measure
µn,+∞ corresponding to T = +∞ is simply the symmetric Bernoulli product measure
on Ωn, or equivalently the uniform law on Ωn. The density of µn,T with respect to

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



4 CHAPTER 1. INTRODUCTION

µn,+∞ is a function of Sn. By the classical Cramér theorem, the law of Sn under
µn,+∞ satisfies a large deviation principle governed by the rate function I given by

∀x ∈ [−1, 1] I(x) = −1 − x

2
ln(1 − x) − 1 + x

2
ln(1 + x) .

Varadhan’s lemma implies then that the law of Sn under µn,T satisfies a large devia-
tion principle governed by the rate function J given by

∀x ∈ [−1, 1] J(x) = −x
2

T
+ I(x) − inf

y∈[−1,1]

(
− y2

T
+ I(y)

)
.

Now, there exists a critical value Tc ∈]0,+∞[ such that:
• For T ≥ Tc, the function J has a unique global minimum at m∗ = 0.
• For T < Tc, the function J has two global minima at −m∗ and m∗, where m∗ > 0.
The large deviation principle implies that

∀ε > 0 lim
n→∞P

(∣∣|Sn| −m∗∣∣ > ε
)

= 0 .

Whenever T ≥ Tc and m∗ = 0, the law of Sn converges towards δ0, the Dirac mass
at 0, and we have a weak law of large numbers very similar to the i.i.d. case. Let
us look more closely at the case T < Tc. The system being symmetric under sign
reversal, we conclude that

∀ε > 0 lim
n→∞P

(∣∣Sn −m∗∣∣ ≤ ε
)

= lim
n→∞P

(∣∣Sn +m∗∣∣ ≤ ε
)

=
1
2
.

Therefore the law of Sn converges towards 1
2 (δ−m∗ + δm∗). This is a fundamentally

new type of law of large numbers, where the limit is random.

1.2. The nearest–neighbour Ising model

To incorporate a more complex dependence between the random variables, we put
a geometric structure by attaching the random variables to the d–dimensional lattice
Zd. Let Λ ⊂ Zd be a cubic box. A configuration in Λ is a map σ : Λ → {−1,+1}.
The energy or Hamiltonian H+

Λ (σ) of the configuration σ in Λ with plus boundary
conditions is

H+
Λ (σ) = −1

2

∑
x,y∈Λ,|x−y|=1

σ(x)σ(y) −
∑

x∈Λ,y �∈Λ,|x−y|=1

σ(x) .

Let T > 0 be the temperature. The Ising Gibbs measure µ+
Λ,T in Λ at temperature T

with plus boundary conditions is given by

∀σ ∈ {−1,+1}Λ µ+
Λ,T (σ) =

exp−H
+
Λ (σ)
T∑

η∈{−1,+1}Λ

exp−H
+
Λ (η)
T

.

PANORAMAS & SYNTHÈSES 23



1.2. THE NEAREST–NEIGHBOUR ISING MODEL 5

The most likely configurations are those having a small energy, i.e., those for which
the contacts between the minuses and the pluses are reduced. Thus we have built a
complex probability law with strong spatial correlations. For n ≥ 1, let

Λ(n) = Zd∩] − n/2, n/2]d .

We consider the empirical average

M(Λ(n)) =
1

|Λ(n)|
∑

x∈Λ(n)

σ(x) .

A subadditive argument shows that for any T > 0, the following limit exists:

lim
n→∞µ+

Λ(n),T (M(Λ(n))) = m∗(T ) .

The quantity m∗(T ) is called the spontaneous magnetization at temperature T . This
terminology stems from the fact that the Ising model was originally introduced as a
model of ferromagnetism (under some adequate conditions, a magnet submitted to
the influence of a magnetic field will remember the sign of the field even after it has
disappeared). We say that there is a phase transition at temperature T if m∗(T ) > 0.
In any dimension d ≥ 2, there exists a positive and finite critical temperature Tc(d)
such that the Ising model exhibits a phase transition for T < Tc(d) and it does not
for T > Tc(d).

Let us now examine the large deviation behavior of M(Λ(n)). For any T > 0 and
α ∈ [−1, 1], a subadditive argument yields the existence of the limit

J(α) = lim
n→∞ − 1

nd
lnµ+

Λ(n),T (M(Λ(n)) ≥ α) .

The sequence of the laws of M(Λ(n)) under µ+
Λ(n),T , n ≥ 1, satisfies a large deviation

principle with speed nd and governed by the good rate function x ∈ [−1, 1] �→ J(|x|).
This rate function vanishes on [−m∗,m∗] and it is positive on [−1,−m∗[∪ ]m∗, 1]. In
this context, the analog of the Log–Laplace in Cramér’s theory is the pressure p,
defined as the following subadditive limit:

∀t ∈ R p(t) = lim
n→∞

1
nd

lnµ+
Λ(n),T

(
exp

(
tndM(Λ(n))

))
.

Exactly as in Cramér’s theory, the rate function I is the Fenchel–Legendre transform
of p. The previous large deviation principle allows to conclude that

∀ε > 0 lim
n→∞µ+

Λ(n),T

(|M(Λ(n))| ≥ m∗ + ε
)

= 0 .

For T > Tc, we have m∗ = 0, the rate function I has a unique global minimum
at 0, and we obtain therefore a weak law of large numbers as in the i.i.d. case. The
situation is much more complex for T < Tc. The behavior of M(Λ(n)) in the interval
[−m∗,m∗] is correctly described by a surface large deviation principle. For m < m∗,
close to m∗, one has

lim
n→∞

1
nd−1

lnµ+
Λ(n),T

(
M(Λ(n)) ≤ m

)
= −c

(
m∗ −m

2m∗
) d−1

d
,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



6 CHAPTER 1. INTRODUCTION

where c = c(d, T ) is a positive constant depending on the dimension and the temper-
ature. The proof of such a result is rather delicate, still subadditivity plays a key role
in it. However, this is quite another story (see [Cer06]), and our main concern in this
text is the study of sequences of i.i.d. random variables in the infinite dimensional
setting.

1.3. Overview of the text

This text is a self–contained account of Cramér’s theory in infinite dimensions. It is
mainly based on the classical texts by Azencott [Aze80], Bahadur and Zabell [BZ79],
Dembo and Zeitouni [DZ98], Deuschel and Stroock [DS89]. However the order of
our presentation is slightly different. In fact, we focus on the infinite dimensional
setting and we try to understand the relevance of the topological hypotheses necessary
to carry out the core of the theory; to this end we make appeal to various tools
of functional analysis in topological vector spaces. In particular, minimax results
pop up at several key places throughout the text. Another motivation is to push
further the analogy between the large deviation proofs in statistical mechanics and for
i.i.d. random variables. The subadditive argument was initially imported by Lanford
[Lan73] from statistical mechanics into Cramér’s theory and it sheds a new light on
the i.i.d. case. When performing this argument, we systematically use the Minkowski
functional and this way we get rid of some topological hypotheses appearing in [DS89,
DZ98]: namely we do not need to work in a Polish space.

Conversely, large deviation techniques constitute a precious guideline in the study
of phase coexistence [Cer00]. In the percolation context, the usual large deviation
upper bound could not be proven because of a lack of compactness, instead it was
replaced by an enhanced upper bound. We provide here in the general setting of
Cramér’s theory a similar enhanced upper bound. When adapting this idea to the
finite dimensional situation, we obtain an apparently new upper bound valid for any
probability measure in Rd. In the case of the real line, we have written a proof of
Cramér’s theorem relying entirely on subadditivity. Not only is it instructive, but we
gather slightly more information than with the standard proof. Moreover, the proof
of the volume large deviation principle for percolation and Ising models looks like a
twin sister of it [Cer06].

To pursue further the similarity in the general case, we separate the issue of proving
the existence of a rate function and the problem of its identification. In statistical
mechanics, one is usually unable to provide an operational description of the rate
function I (one notable exception is the two dimensional Ising model, thanks to On-
sager’s computation [Mes04]), while in the i.i.d. case with law µ the rate function I,
called the Cramér transform of µ, coincides with the Fenchel–Legendre transform Λ∗

of the Log–Laplace of µ. The inequality I ≥ Λ∗ holds in full generality. In this text we

PANORAMAS & SYNTHÈSES 23



1.3. OVERVIEW OF THE TEXT 7

explore various conditions and mechanisms ensuring the converse inequality I ≤ Λ∗

and thus the equality I = Λ∗.
• For discrete measures, the equality I = Λ∗ is a consequence of a rough version of
Stirling’s formula and some simple probabilistic estimates.
• For smooth measures in Rd having finite exponential moments of any order, the
equality I = Λ∗ can be obtained with the help of calculus techniques.
>From these two previous simple cases, we perform a rather delicate density argument
and we extend the equality I = Λ∗ to any Borel measure µ on a finite dimensional
vector space. To this end, we examine the regularity of I and Λ∗ as functions of
the initial measure µ, a point of view which does not seem to have been exploited
in a systematic fashion in previous expositions. Whenever the topology of the vector
space can be suitably approached by finite dimensional topologies, this equality can
be lifted to the infinite dimensional setting. This is the case for weak topologies.

By adding a geometric condition on the space, called convex regularity, we obtain
an adequate upper bound on I and we prove again that I = Λ∗. Convex regularity
occurs for instance in a separable Banach space or in the dual space of a Banach
space. This leads to a natural generalization of the classical Cramér theorem in Rd.
If µ is a probability measure on the cylinder σ–field of the dual space of a Banach
space and if its Log–Laplace is finite in a neighborhood of the origin, the empirical
mean of an i.i.d. sample of µ satisfies the full large deviation principle.

We give several versions of Cramér’s theorem in different contexts: in R, in Rd, in
the weak topology, in the dual of a Banach space and finally in a separable Banach
space, following the presentation of De Acosta [DA85] and Gao [Gao97]. As in the
classical expositions, we apply this last theorem to the case of the Gaussian measures
and this way we recover Schilder’s theorem.

In the last part, we discuss the relationship between Cramér’s theorem and Sanov’s
theorem. We first provide an autonomous derivation of Sanov’s theorem, due to
Groeneboom, Oosterhoff and Ruymgaart [GOR79]. We show how the most general
Sanov theorem is implied by our version of Cramér’s theorem in a dual space. In the
classical exposition [DS89], Cramér’s theorem was shown to imply Sanov’s theorem
for the weak topology. In [DZ98], Sanov’s theorem for the stronger τ–topology is
derived via an apparently different method involving projective limits. Hence the two
approaches are reconciled here. We show also how Cramér’s theorem can be recovered
from Sanov’s theorem in a compact situation.

A simple technique to get an upper bound on I is to condition the n sample to be in
a fixed compact. With this technique, we prove again in the last chapter the equality
I = Λ∗ for any probability measure µ on a separable Banach space. A key point is the
upper semicontinuity of Λ∗ as a function of the measure. The argument is a variant
of the proof of the celebrated Mosco convergence theorem [Mos71, Zab92b].
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