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p - A D I C A U T O M O R P H I C F O R M S O N R E D U C T I V E G R O U P S 

by 

Haruzo Hida 

Abstract, — In these lecture notes, we will prove vertical control theorems for ordi
nary p-adic automorphic forms and irreducibility of the Igusa tower over unitary and 
symplectic Shimura varieties. 
Résumé (Formes automorphes p-adiques sur les groupes réductifs). — Nous démontrons 
le contrôle vertical pour les formes automorphes ordinaires p-adiques et l'irréductibi
lité de la tour d'Igusa pour les variétés de Shimura symplectique et unitaire. 
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1. Introduction 

Let p be a prime. What I would like to present in this series of lectures is the 

theory of families of p-ordinary p-adic (cohomological) automorphic forms on reductive 

groups. After going through basics of the theory of p-adic automorphic forms, we 

would like to study 

(1) Vertical Control Theorem (VCT: construction of p-adic families); 

(2) p-adic L-functions (in Symplectic and Unitary cases); 

(3) Galois representations; 

(4) the Iwasawa theoretic significance of p-adic L-functions. 

1.1. Automorphic forms on classical groups. — Let G/z be an affine group 

scheme whose fiber over Zp is a classical Chevalley group; so, unitary groups are 

included (dependent on the choice of p). Take a Borel subgroup B and its torus T . 

When G is split over Q, we may embed G into GL(n)/Q. Let B be the Borel subgroup 

(we can take i t to be the group of upper triangular matrices in G ) . Let T be the group 

of diagonal matrices. We have a splitting B = T K U for the unipotent radical U 

of B . On the quotient variety G/U (which is a T-torsor over the projective flag 

variety G/£?), T acts by gilt = gtU, and hence T acts on the structure sheaf O Q / U 

by t<f>(gU) = (j)(gtU). This action gives rise to an order on X(T) = Hom(T / Q, G m ) 

so that the positive cone in X(T) is made of K € X(T) such that the tt-eigenspace 

L ( K ) on the global sections of O Q / U * s non-trivial. We then have a representation 

L ( K ; A) = LG(K', A) on L(K) given by <j)(gU) i-> 0 ( / i - 1 # [ / ) for h e G(A), as long as T is 

split over a ring A . When G = SX(2), T ^ G m , X(T) = Z by K n i f K(X) = xn, and 

L{n\ A) is the symmetric K- th tensor representation of 5L(2) , which can be realized 

on the space of homogeneous polynomials of degree n so that a G SL(2) acts on a 

polynomial P(X,Y) by P(X,Y) K + P((X,F)^"1). 

There are two ways of associating a weight to automorphic forms on G: One is to 

consider the cohomology group HD(T, L { K ; A)) of an appropriate degree d for a given 

arithmetic subgroup V C G(Q), and we call harmonic automorphic forms spanning 

HD(T, L ( K ; C)) automorphic forms of (topological) weight K. This way works well for 

any classical (or more general reductive) groups. 

When the symmetric space of G is isomorphic to a (bounded) hermitian domain 

H wi th origin 0 , like (the restriction of scalar to Q of) F-forms of Sp or SU{m,n) 

over totally real fields F , we have another way to associate a weight to holomorphic 

automorphic forms. I n this case, we have H = G(M)/Co for the stabilizer Co of 0, 

which is a maximal compact subgroup of G ( R ) . In the simplest case of S X ( 2 ) / Q = 

5 p ( 2 ) / Q , Go = S02{R) and H = H = {z e C | Im(*) > 0} wi th G ( R ) / 5 0 2 ( R ) = H 

by g »-> g{^/—T). As is well known that H is holomorphically equivalent to the open 

unit disk in C by z «-> 
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The group Co can be regarded as a group of real points wi th respect to a twisted 
complex conjugation in the complexification С of Co- In the case of S L { 2 ) / Q , 502(R) 
can be regarded as Sl in G m ( C ) by (* 3) i-> c\f^\ + d G 5 1 , and S1 is the set of fixed 
points of the twisted "complex conjugation": x \-> x~l in G m ( C ) = C x . Generalizing 
this example, we see that the compact group U(n) is the subgroup of G L n ( C ) fixed 
by the complex conjugation: x i—• lx~l. Any holomorphic representation p : С —> 
GL(V(p)) gives rise to a holomorphic complex vector bundle V = (G(R) XV)/CQ by 
the action (g,v) i—» (gu,u~1v) for и G Co- Since W is simply connected, we can split 
V = H x V as holomorphic vector bundles; so, we have a linear map Jp(g, z) :VZ —> 
Vg(z) for each given g G G(R) which identifies the fibers Vz and Vg(z) of V . Thus we 
have a function : G(R) x H —> G L ( V ) satisfying 

(1) (Cocycle Relation) Jp(gh,z) = Jp(g,h(z))Jp(h, z) for ft € G(R) ; 
(2) (Holomorphy) Jp(g,z) is holomorphic in 2. 

When G = SL(2), then G 0 = S02(M) С G = C x whose irreducible complex repre
sentation is given by 

/ c o s ( 0 ) - s i n ( 0 ) \ / * * \ / * * \ . fc i f c f l 

UW cos(i) J = U dj ^ 4c rfj = { C l + d ) = 6 

In this case, Jp(g,z) = (cz + d) f c . This goes as follows: Split GZ,2(R) = PCo for 
P made of upper triangular matrices wi th right lower corner 1. For z = x + iy, 
define pz = (о T)• Then for g e 5 L 2 ( R ) , write gpz = p9(z)U wi th -u G Go, and we 
have p(u) — p{p~^gpz) = ( с г + d) f e by computation. Indeed, J(g,z) sends ( f , p z ) to 
(uv,Pg(z)) ~ (v,gpz) = (v,pg(z)U). 

One can view the complexification G as a real algebraic group; let Tc be a maximal 
real torus of G. To any character к of Tc, we can attach a rational representation 
J L C ( ^ ; C ) ( = pK) of G. Let V(K) — L c ( « ; C ) . For an arithmetic discrete subgroup 
Г С G(Q), a holomorphic automorphic form of (coherent) weight к is a holomorphic 
function / : H —> L c ( ^ ; C ) satisfying /(7(2;)) = JP(/y,z)f(z) for all 7 G Г (with some 
additional growth condition i f r \ W is not compact). Again the space of holomorphic 
automorphic forms is t r ivial unless the weight к is positive (with respect to a fixed 
Borel subgroup B). 

Often the complex manifold T\H is canonically algebraizable, giving rise to an 
algebraic variety (or a scheme) X r , called canonical models or Shimura varieties, 
defined over a valuation ring W in a number field wi th residual characteristic p. A t 
the same time, we can algebraize the vector bundle V(K) associated to V ( « ) . Thus 
we often have a coherent sheaf ш_к on Xr giving rise to V(K) after extending scalar 
to C. The global sections of H°(Xr,uSJA) for W-algebra A are called A-integral. 
automorphic forms of weight к. Note that, Tc is isomorphic to T , because they are 
maximal tor i in the same group G. Thus we can and wi l l identify T and Tc (with 
compatible choice of Borel subgroups В and Be = ВПС). On Xr, we may regard the 
Г-module LG(K; A ) as a locally constant sheaf associating to an open subset U С Xr 
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sections over U of the covering space LG{K>', A) = T\(Dx LG(K>', A)) over Xp . Here the 

quotient x LG{K',A)) is taken through the diagonal action. Thus each positive 

weight K € X(T) gives two spaces of automorphic forms: 

HD(XR,LG(K-A)), H°(Xr,u/JA) = GK(T; A). 

There is (at least conjecturally) a correspondence K I—• K* such that 

H°(Xr,u
K) Hd{Xv, L G ( K * ; O ) 

by a "generalized Eichler-Shimura isomorphism" which is supposed to be equivariant 

under Hecke operators. I f such equivariance holds, we say that the two modules: the 

source and the image are equivalent as Hecke modules. In the example of SL(2)/Q, 

we have K G X(T) = X(GM) = Z and K* = K - 2 with: 

G „ ( r ; C ) H\XriLSL{2)(K - 2;C)) (r C SL2(Z)) 

via / i * the cohomology class of [f(z)(X — zY)K~2dz\. This is valid i f K ^ 2. 

1.2. p -Adic interpolation of automorphic forms. — We would like to inter

polate these two sets of spaces {H°(Xr, K and {Hd(Xr, L G ( K \ W))}« when the 

weights K vary continuously in H o m t o p _ ^ p ( T ( Z p ) , Z£ ) . On these two spaces, there is a 

natural action of Hecke operators; so, we want this interpolation to take into account 

the Hecke operators. To describe our idea of how to interpolate automorphic forms, 

we write W for the p-adic completion of W . What we would like to do in the two 

cases is: 

(1) (Universality) Construct a (big) space V which is a compact module 

over W[[T(Z P ) ] ] such that the K-eigenspace V[K] contains canonically the space 

Hd(Xr, LG(K', W)) in the topological case, resp. H°(Xr/W,cuK) in the coherent case 

as VF[[T(Z p)]]-modules. 

(2) (Hecke operators) Establish a natural action of Hecke operators on V , and 

show the inclusion in (1) is Hecke equivariant. 

(3) (VCT) Find an appropriate W][T(Z p)]]-submodule X c V of'co-finite type 

VF-dual is of finite type) such that X is stable under Hecke operators and X[K] is 

canonically isomorphic, as Hecke modules, to a well-described subspace of automor

phic forms of weight K i f K » 0. 

The item (3) is called a vertical control theorem of the subspace X. Examples of 

the V C T are given as Theorem 3.2 for elliptic modular forms, Theorem 3.3 for p-

adic family of elliptic modular forms, Theorem 8.5 for automorphic forms on unitary 

groups, Theorem 9.1 for Hilbert modular forms and Corollary 9.3 for Hilbert modular 

Hecke algebras. A more general result on V C T can be found in [H02] and [PAF]. In 

[H02] page 37 and [ G M E ] 3.2.3, Hecke operators T are defined for a given (geometric) 

modular form / as a sum f\T(A/S) = J2a f(Aa/s) of the values of / at abelian 

schemes A A wi th a specific isogeny a : A —> A A of a given degree. This is perfectly fine 

if the degree is invertible on the base scheme 5, but otherwise i f S is of characteristic p 
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