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1. INTRODUCTION

1.1. Physical origin of the problem

One of the first explanatory models for superconductivity (which refers to the ex-
istence of permanent currents in certain substances, with no energy dissipation) has
been proposed during the fifties by V. Ginzburg and L. Landau, from the Landau

theory of phase transitions. Following this model, the degree of superconductivity of
a body occupying a domain 0 of JR3, is characterized by a "wave function" S~ -~ ~
referred to as the order parameter. In the quantum theory of J. Bardeen, L.N. Cooper
and J. Schrieffer (BCS theory), which came in 1957 to justify the Ginzburg-Landau
phenomenological model, the square of the modulus of this order parameter rep-

resents the local electron pair (Cooper pairs) density, responsible for the supercon-
ductivity. For u = 1 this density is maximum and minimum for lul =0.

The energy functional for a superconductor proposed by Ginzburg and Landau is

where A is the 1-form vector potential associated to the induced field dA in the

superconductor (du - iAu is thus a 1-form taking its values in C). he is the 2-

form representing the external field applied to the superconductor. This is one of

the parameters of the problem together with the constant K, known as the coupling
constant, which depends on the sample considered, and which plays an essential part
in the theory, as we shall see in the following. As a ratio of two lengths, K _ ~ , where
A is the penetration depth of the external field he in the sample (see the following) and
~ is the characteristic size of a vortex (see section 2), is a dimensional constant. Note
that this functional is also the Yang-Mills-Higgs action in the abelian gauge theory
modeling the interaction between a classical magnetic field and a Higgs particle.



Schematically, the observed phenomena are as follows. When the applied field is
zero, the superconductor is said to be in the pure state:

The density of Cooper pairs is maximum and the induced field is zero. When the ap-
plied field is sufficiently strong (sample dependent) the superconductivity disappears:

The density of Cooper pairs is then minimal and the induced field coincides with the
applied field. The superconductor is in the normal state.

The nature of the transition from the pure state to the normal state depends on
the composite one and in particular on the value of k. One observes that for 03BA 

1 I V2 (type I superconductor), this transition is sharp and happens for a certain
strength of the applied field which is independent of K. Instead, for /’1; > (type
II superconductor), as the external field increases, to go from the pure state to the
normal state, we pass through a different phase known as a mixed state, where more
and more regions of normal state contained in tubes (vorticity filaments) around
which the phase of u makes one or several circular turns, appears. When the sample
is homogeneous and the external field uniform, these tubes line up in the direction
of the field, to form periodic Abrikosov lattices, named after the physician who first
showed their existence. It is observed that this lattice is triangular in the fundamental
state. We pass from the pure state to the mixed state, for an applied field known as

the "first critical field" 0 (log 03BA 03BA), and we leave the mixed state to go into the
normal state for an applied field known as the "second critical field" Hc2 ~ O(03BA). The
phase diagram (figure 1) summarizes the observations mentioned above. For a more
complete account of the physics of superconductors the reader can refer to: [dG], .,
[SST], [Ti]...

1.2. The mathematical questions underlying superconductivity

There are numerous difficulties that arise when one wants to give a mathematically
rigorous sense to the previous observations, starting from the Ginzburg-Landau model.
A first reduction is to consider a 1 or 2-dimensional version of the model (SL C I~~3

and he then have the symmetries corresponding to those reductions: space comprised
between two parallel planes or infinite cylinder, in uniform magnetic fields...). In this
talk, we shall not consider the studies in 1-dimension which are however extensive and

which enable very often a more refined analysis of the phase diagram ([BH1], [BH2],
[Af~ ... for a complete presentation of these results, see [AT]). We shall consider here
only the 2-dimensional case, which is the minimal dimension to observe vortices (di-
mension 3 and higher dimensions are treated in [Ri2], [LR], [LR2] and also in [BBM]).



FIGURE 1. Phases diagram

S~ is thus an infinite cylinder and he is a uniform field parallel to the direction of the

axis of the cylinder. 0 then denotes the 2-dimensional section of this cylinder and he

being a 2-form which is constant on this section is often confused with the number

giving its intensity. The aim is thus to understand the nature of fundamental states

of the functional V, and also of the critical points in general, as a function of the
different values of (K, he) in the phase diagram represented in figure 1. By "under-

standing the nature of the fundamental states of :1", we mean essentially identifying
the zero set of the order parameter u of a solution minimizing V, which corresponds
to the 2-dimensional section of the vortex lattice expected in the mixed phase.

To simplify the analysis we consider the change of variables A -~ ~A in the

original model, which then leads us to the functional

This new functional verifies the gauge invariance for any

function § on O. It is then possible to extend the model to any domain Q which is any
2-dimensional manifold. (u, A) are then respectively the sections and connections of
a complex line bundle E on 0 on which we fix a hermitian product whose real part is

( , ) or p for the quadratic form. du - iAu is replaced by the covariant derivative dAu
of u with respect to A and dA is the curvature of the connection A. In the following,
we note h = *dA.

Section 2 is devoted to the study of the Ginzburg-Landau free energy :F without
interaction with the external field (i.e he = 0). In 2.1, we present the work of Jaffe
and Taubes on the integrable or non-interacting case ~ = 1/B/2. We state their

conjectures for the cases 03BA  and 03BA > In 2.2, we describe the BBH



asymptotic analysis (F. Bethuel, H. Brezis and F. Hélein [BBH]) in the London limit:
r~ -~ +00 which corresponds to the strongly repulsive case. In this limit, to which we
shall restrict in the following, the vorticity phenomena appear more clearly; this case
is also close to many of the type II superconductors we have in practice, for which
the a-dimensional parameter K is very large. In section 2.3, we revisit the part played
by the renormalized energy W coming from the BBH asymptotic analysis used to
describe the critical points of F. Finally, we give answers to the conjectures of Jaffe
and Taubes in the London limit and we extend them to more general cases. The third
part is devoted to the complete study of the functional 9 comprising the interaction
term with the external field. The vorticity is then no longer a fixed parameter as
in the previous section but becomes a variable of the problem. The contents of this
section covers part of S. Serfaty’s PhD thesis, and the work she did in collaboration
with E. Sandier.

2. STUDY OF THE FREE ENERGY FUNCTIONAL F

2.1. The integrable or non-interacting case K = 
In [JT], A. Jaffe and C. Taubes study the critical points on ffi.2 of the free energy

functional

and which are solutions to the Euler equations

where dA is the operator acting on the 1-forms 7y such as dÀ 17 = Supposing
that the intrinsic quantities 11 -lull and dA are decreasing (polynomially), the
renormalized magnetic field is an integer N

which corresponds to the degree of on circles of sufficiently large radii. This is
known as the homotopy class of the couple (u, A). For a given N, say N > 0, it has
been observed by E.B. Bogomol’nyi [Bog] that, for the particular value K = 
the functional 0 can be rewritten under the following form


