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SYMPLECTIC LOCAL ROOT NUMBERS, CENTRAL
CRITICAL L-VALUES, AND RESTRICTION PROBLEMS IN

THE REPRESENTATION THEORY OF CLASSICAL GROUPS

by

Wee Teck Gan, Benedict H. Gross & Dipendra Prasad

Abstract. — In this paper, we provide a conjectural recipe for the restriction of irre-
ducible representations of classical groups (including metaplectic groups), to certain
subgroups, generalizing our earlier work on representations of orthogonal groups.
Our conjectures include the cases of Bessel and Fourier-Jacobi models. In fact, it
is the standard representation of the classical group, together with its orthogonal,
symplectic, hermitian, or skew-hermitian form, that plays the primary role, and not
the classical group alone. All of our conjectures assume the Langlands parametriza-
tion. For classical groups over local fields, the recipe involves local epsilon factors
associated to the Langlands parameter and certain summands of a fixed symplectic
representation of the L-group. For automorphic representations over global fields, it
involves the central critical value of this symplectic L-function.

Résumé (Nombres de racines locales symplectiques, L-valeurs critiques centrales et problèmes de
restriction en théorie de représentation des groupes classiques)

Dans cet article, nous donnons une recette conjecturale pour la restriction à cer-
tains sous-groupes des représentations irréductibles de groupes classiques. Cela inclut
les groupes métaplectiques et généralise notre travail antérieur pour les groupes ortho-
gonaux. Nos conjectures comprennent les cas des modèles de Bessel et Fourier-Jacobi.
En fait le rôle principal est joué, non par le groupe seul, mais par la représentation
naturelle de ce groupe classique, munie de sa forme bilinéaire-orthogonale, symplec-
tique, hermitienne ou anti-hermitienne selon le cas. Dans toutes nos conjectures, nous
admettons que la paramétrisation de Langlands est établie. Notre recette, pour les
groupes classiques sur les corps locaux, fait intervenir les facteurs epsilon locaux asso-
ciés au paramètre de Langlands et certains facteurs d’une représentation symplectique
fixée du L-groupe. Pour les représentations automorphes sur des corps globaux, elle
fait intervenir la valeur, au centre de la bande critique, de la fonction L-symplectique
correspondante.

1. Introduction

It has been almost 20 years since two of us proposed a rather speculative ap-
proach to the problem of restriction of irreducible representations from SOn to SOn−1
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[24, 25]. Our predictions depended on the Langlands parametrization of irreducible
representations, using L-packets and L-parameters. Since then, there has been con-
siderable progress in the construction of local L-packets, as well as on both local and
global aspects of the restriction problem. We thought it was a good time to review
the precise conjectures which remain open, and to present them in a more general
form, involving restriction problems for all of the classical groups.

Let k be a local field equipped with an automorphism σ with σ2 = 1 and let
k0 be the fixed field of σ. Let V be a vector space over k with a non-degenerate
sesquilinear form and let G(V ) be the identity component of the classical subgroup
of GL(V ) over k0 which preserves this form. There are four distinct cases, depending
on whether the space V is orthogonal, symplectic, hermitian, or skew-hermitian. In
each case, for certain non-degenerate subspaces W of V , we define a subgroup H of
the locally compact group G = G(V ) × G(W ) containing the diagonally embedded
subgroup G(W ), and a unitary representation ν of H. The local restriction problem
is to determine

d(π) = dimC HomH(π ⊗ ν,C),

where π is an irreducible complex representation of G.
The basic cases are when dimV −dimW = 1 or 0, where ν is the trivial representa-

tion or a Weil representation respectively. When dimV − dimW ≥ 2, this restriction
problem is also known as the existence and uniqueness of Bessel or Fourier-Jacobi
models in the literature. As in [24] and [25], our predictions involve the Langlands
parametrization, in a form suggested by Vogan [70], and the signs of symplectic root
numbers.

We show that the Langlands parameters for irreducible representations of classical
groups (and for genuine representations of the metaplectic group) are complex rep-
resentations of the Weil-Deligne group of k, of specified dimension and with certain
duality properties. We describe these parameters and their centralizers in detail, be-
fore using their symplectic root numbers to construct certain distinguished characters
of the component group. Our local conjecture states that there is a unique represen-
tation π in each generic Vogan L-packet, such that the dimension d(π) is equal to
1. Furthermore, this representation corresponds to a distinguished character χ of the
component group. For all other representations π in the L-packet, we predict that
d(π) is equal to 0. The precise statements are contained in Conjectures 17.1 and 17.3.

Although this material is largely conjectural, we prove a number of new results in
number theory and representation theory along the way:

(i) In Proposition 5.2, we give a generalization of a formula of Deligne on orthogonal
root numbers to the root numbers of conjugate orthogonal representations.

(ii) We describe the L-parameters of classical groups, and unitary groups in par-
ticular, in a much simpler way than currently exists in the literature; this is
contained in Theorem 8.1.

(iii) We show in Theorem 11.1 that the irreducible representations of the metaplectic
group can be classified in terms of the irreducible representations of odd special
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orthogonal groups; this largely follows from fundamental results of Kudla-Rallis
[44], though the statement of the theorem did not appear explicitly in [44].

(iv) We prove two theorems (cf. Theorems 15.1 and 16.1) that allow us to show the
uniqueness of general Bessel and Fourier-Jacobi models over non-archimedean
local fields. More precisely, we show that d(π) ≤ 1 (cf. Corollaries 15.3, 16.2
and 16.3), reducing this to the basic cases when dimW⊥ = 0 or 1, which were
recently established by [4], [64] and [76]. The same theorems allow us to reduce
our local conjectures to these basic cases, as shown in Theorem 19.1.

One subtle point about our local conjecture is its apparent dependence on the
choice of an additive character ψ of k0 or k/k0. Indeed, the choice of such a character
ψ is potentially used in 3 places:
(a) the Langlands-Vogan parametrization (which depends on fixing a quasi-split pure

inner form G0 of G, a Borel subgroup B0 of G0, and a non-degenerate character
on the unipotent radical of B0);

(b) the definition of the distinguished character χ of the component group;
(c) the representation ν of H in the restriction problem.
Typically, two of the above depend on the choice of ψ, whereas the third one doesn’t.
More precisely, we have:
— in the orthogonal case, none of (a), (b) or (c) above depends on ψ; this explains

why this subtlety does not occur in [24] and [25].
— in the hermitian case, (a) and (b) depend on the choice of ψ : k/k0 → S1, but (c)

doesn’t.
— in the symplectic/metaplectic case, (a) and (c) depend on ψ : k0 → S1, but (b)

doesn’t.
— in the odd skew-hermitian case, (b) and (c) depend on ψ : k0 → S1, but (a)

doesn’t.
— in the even skew-hermitian case, (a) and (c) depend on ψ : k0 → S1 but (b)

doesn’t.
Given this, we check in §18 that the dependence on ψ cancels out in each case, so

that our local conjecture is internally consistent with respect to changing ψ. There is,
however, a variant of our local conjectures which is less sensitive to the choice of ψ,
but is slightly weaker. This variant is given in Conjecture 20.1. Finally, when all the
data involved are unramified, we state a more refined conjecture; this is contained in
Conjecture 21.3.

After these local considerations, we study the global restriction problem, for cuspi-
dal tempered representations of adelic groups. Here our predictions involve the central
values of automorphic L-functions, associated to a distinguished symplectic represen-
tation R of the L-group. More precisely, let G = G(V )×G(W ) and assume that π is
an irreducible cuspidal representation of G(A), where A is the ring of adèles of a global
field F . If the vector space HomH(A)(π⊗ ν̄,C) is nonzero, our local conjecture implies
that the global root number ε(π,R, 1

2 ) is equal to 1. If we assume π to be tempered,
then our calculation of global root numbers and the general conjectures of Langlands
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and Arthur predict that π appears with multiplicity one in the discrete spectrum of
L2(G(F )\G(A)). We conjecture that the period integrals on the corresponding space
of functions

f 7→
∫
H(k)\H(A)

f(h) · ν(h) dh

gives a nonzero element in HomH(A)(π⊗ ν̄,C) if and only if the central critical L-value
L(π,R, 1

2 ) is nonzero.
This first form of our global conjecture is given in §24, after which we examine

the global restriction problem in the framework of Langlands-Arthur’s conjecture on
the automorphic discrete spectrum, and formulate a more refined global conjecture in
§26. For this purpose, we formulate an extension of Langlands’ multiplicity formula
for metaplectic groups; see Conjecture 25.1.

One case in which all of these conjectures are known to be true is when k = k0×k0

is the split quadratic étale algebra over k0, and V is a hermitian space over k of
dimension n containing a codimension one nondegenerate subspace W . Then

G ∼= GLn(k0)×GLn−1(k0) and H ∼= GLn−1(k0).

Moreover, ν is the trivial representation. When k0 is local, and π is a generic repre-
sentation of G = GLn(k0)×GLn−1(k0), the local theory of Rankin-Selberg integrals
[34], together with the multiplicity one theorems of [4], [3], [66], [67] and [76], shows
that

dim HomH(π,C) = 1.

This agrees with our local conjecture, as the Vogan packets for G = GLn(k0) ×
GLn−1(k0) are singletons. If k0 is global and π is a cuspidal representation of G(A),
then π appears with multiplicity one in the discrete spectrum. The global theory of
Rankin-Selberg integrals [34] implies that the period integrals over H(k)\H(A) give
a nonzero linear form on π if and only if

L(π, stdn ⊗ stdn−1, 1/2) 6= 0,

where L(π, stdn⊗stdn−1, s) denotes the tensor product L-function. Again, this agrees
with our global conjecture, since in this case, the local and global root numbers are
all equal to 1, and

R = stdn ⊗ stdn−1 + std∨n ⊗ std∨n−1.

In certain cases where the global root number ε = −1, so that the central value is
zero, we also make a prediction for the first derivative in §27. The cases we treat are
certain orthogonal and hermitian cases, with dimW⊥ = 1. We do not know if there
is an analogous conjecture for the first derivative in the symplectic or skew-hermitian
cases.

In a sequel to this paper, we will present some evidence for our conjectures, for
groups of small rank and for certain discrete L-packets where one can calculate the dis-
tinguished character explicitly. We should mention that in a series of amazing papers
[77, 78, 74, 75] and [53], Waldspurger and Mœglin-Waldspurger have established
the local conjectures for special orthogonal groups, assuming some natural properties
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of the characters of representations in tempered L-packets. There is no doubt that
their methods will extend to the case of unitary groups.

Acknowledgments. — W. T. Gan is partially supported by NSF grant DMS-0801071.
B. H. Gross is partially supported by NSF grant DMS 0901102. D. Prasad was par-
tially supported by a Clay Math Institute fellowship during the course of this work.
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2. Classical groups and restriction of representations

Let k be a field, not of characteristic 2. Let σ be an involution of k having k0 as
the fixed field. If σ = 1, then k0 = k. If σ 6= 1, k is a quadratic extension of k0 and σ
is the nontrivial element in the Galois group Gal(k/k0).

Let V be a finite dimensional vector space over k. Let

〈−,−〉 : V × V → k

be a non-degenerate, σ-sesquilinear form on V , which is ε-symmetric (for ε = ±1 in
k×):

〈αv + βw, u〉 = α〈v, u〉+ β〈w, u〉
〈u, v〉 = ε · 〈v, u〉σ.

Let G(V ) ⊂ GL(V ) be the algebraic subgroup of elements T in GL(V ) which preserve
the form 〈−,−〉:

〈Tv, Tw〉 = 〈v, w〉.
Then G(V ) is a classical group, defined over the field k0. The different possibilities
for G(V ) are given in the following table.

(k, ε) k = k0, ε = 1 k = k0, ε = −1 k/k0 quadratic, ε = ±1

G(V ) orthogonal group O(V ) symplectic group Sp(V ) unitary group U(V )

In our formulation, a classical group will always be associated to a space V , so the
hermitian and skew-hermitian cases are distinct. Moreover, the group G(V ) is con-
nected except in the orthogonal case. In that case, we let SO(V ) denote the connected
component, which consists of elements T of determinant +1, and shall refer to SO(V )

as a connected classical group. We will only work with connected classical groups in
this paper.

If one takes k to be the quadratic algebra k0 × k0 with involution σ(x, y) = (y, x)

and V a free k-module, then a non-degenerate form 〈−,−〉 identifies the k = k0 × k0

module V with the sum V0 + V ∨0 , where V0 is a finite dimensional vector space over
k0 and V ∨0 is its dual. In this case G(V ) is isomorphic to the general linear group
GL(V0) over k0.
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If G is a connected, reductive group over k0, the pure inner forms of G are the
groups G′ over k0 which are obtained by inner twisting by elements in the pointed
set H1(k0, G). If {gσ} is a one cocycle on the Galois group of the separable closure ks0
with values in G(ks0), the corresponding pure inner form G′ has points

G′(k0) = {a ∈ G(ks0) : aσ = gσag
−1
σ }.

The group G′ is well-defined up to inner automorphism over k0 by the cohomology
class of gσ, so one can speak of a representation of G′(k0).

For connected, classical groups G(V ) ⊂ GL(V ), the pointed set H1(k0, G) and
the pure inner forms G′ correspond bijectively to forms V ′ of the space V with its
sesquilinear form 〈, 〉 (cf. [40, § 29D and § 29E]).

Lemma 2.1. — 1. If G = GL(V ) or G = Sp(V ), then the pointed set H1(k0, G) = 1

and there are no nontrivial pure inner forms of G.
2. If G = U(V ), then elements of the pointed set H1(k0, G) correspond bijectively to

the isomorphism classes of hermitian (or skew-hermitian) spaces V ′ over k with
dim(V ′) = dim(V ). The corresponding pure inner form G′ of G is the unitary
group U(V ′).

3. If G = SO(V ), then elements of the pointed set H1(k0, G) correspond bijectively
to the isomorphism classes of orthogonal spaces V ′ over k with dim(V ′) = dim(V )

and disc(V ′) = disc(V ). The corresponding pure inner form G′ of G is the special
orthogonal group SO(V ′).

Now let W ⊂ V be a subspace, which is non-degenerate for the form 〈−,−〉. Then
V = W +W⊥. We assume that

1) ε · (−1)dimW⊥ = −1

2) W⊥ is a split space.

When ε = −1, so dim W⊥ = 2n is even, condition 2) means that W⊥ contains an
isotropic subspace X of dimension n. It follows that W⊥ is a direct sum

W⊥ = X + Y,

with X and Y isotropic. The pairing 〈−,−〉 induces a natural map

Y −→ Homk(X, k) = X∨

which is a k0-linear isomorphism (and k-anti-linear if k 6= k0). When ε = +1, so dim
W⊥ = 2n+ 1 is odd, condition 2) means that W⊥ contains an isotropic subspace X
of dimension n. It follows that

W⊥ = X + Y + E,

where E is a non-isotropic line orthogonal to X + Y , and X and Y are isotropic. As
above, one has a k0-linear isomorphism Y ∼= X∨.

Let G(W ) be the subgroup of G(V ) which acts trivially onW⊥. This is the classical
group, of the same type as G(V ), associated to the space W . Choose an X ⊂W⊥ as
above, and let P be the parabolic subgroup of G(V ) which stabilizes a complete flag

ASTÉRISQUE 346



RESTRICTION PROBLEMS FOR CLASSICAL GROUPS 7

of (isotropic) subspaces in X. Then G(W ), which acts trivially on both X and X∨, is
contained in a Levi subgroup of P , and acts by conjugation on the unipotent radical
N of P .

The semi-direct product H = N o G(W ) embeds as a subgroup of the product
group G = G(V )×G(W ) as follows. We use the defining inclusion H ⊂ P ⊂ G(V ) on
the first factor, and the projection H → H/N = G(W ) on the second factor. When
ε = +1, the dimension of H is equal to the dimension of the complete flag variety of
G. When ε = −1, the dimension of H is equal to the sum of the dimension of the
complete flag variety of G and half of the dimension of the vector space W over k0.

We call a pure inner form G′ = G(V ′) × G(W ′) of the group G relevant if the
space W ′ embeds as a non-degenerate subspace of V ′, with orthogonal complement
isomorphic to W⊥. We note:

Lemma 2.2. — Suppose k is non-archimedean.
(i) In the orthogonal and hermitian cases, there are 4 pure inner forms of G =

G(V ) × G(W ) and among these, exactly two are relevant. Moreover, among the two
relevant pure inner forms, exactly one is a quasi-split group.

(ii) In the symplectic case, there is exactly one pure inner form of G = G(V ) ×
G(W ), which is necessarily relevant.

(iii) In the skew-hermitian case, there are 4 pure inner forms of G = G(V )×G(W ),
exactly two of which are relevant. When dimV is odd, the two relevant pure inner
forms are both quasi-split, and when dimV is even, exactly one of them is quasi-split.

Proof. — The statement (i) follows from the fact that an odd dimensional split
quadratic space is determined by its discriminant and that there is a unique split
hermitian space of a given even dimension. The statements (ii) and (iii) are similarly
treated.

Given a relevant pure inner form G′ = G(V ′) × G(W ′) of G, one may define a
subgroup H ′ ⊂ G′ as above. In this paper, we will study the restriction of irreducible
complex representations of the groups G′ = G(V ′) × G(W ′) to the subgroups H ′,
when k is a local or a global field.

3. Selfdual and conjugate-dual representations

Let k be a local field, and let ks be a separable closure of k. In this section, we will
define selfdual and conjugate-dual representations of the Weil-Deligne group WD(k)

of k.
When k = R or C, we define WD(k) as the Weil group W (k) of k, which is an

extension of Gal(ks/k) by C×, and has abelianization isomorphic to k×. A represen-
tation of WD(k) is, by definition, a completely reducible (or semisimple) continuous
homomorphism

ϕ : WD(k)→ GL(M),
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where M is a finite dimensional complex vector space. When k is non-archimedean,
the Weil groupW (k) is the dense subgroup IoFZ of Gal(ks/k), where I is the inertia
group and F is a geometric Frobenius. We normalize the isomorphism

W (k)ab → k×

of local class field theory as in Deligne [13, 14, 15], taking F to a uniformizing
element of k×. This defines the norm character

| − | : W (k)→ R×, with |F | = q−1.

We define WD(k) as the product of W (k) with the group SL2(C). A representation
is a homomorphism

ϕ : WD(k)→ GL(M)

with
(i) ϕ trivial on an open subgroup of I,
(ii) ϕ(F ) semi-simple,
(iii) ϕ : SL2(C)→ GL(M) algebraic.
The equivalence of this formulation of representations with that of Deligne [13, 14,
15], in which a representation is a homomorphism ρ : W (k)→ GL(M) and a nilpotent
endomorphism N of M which satisfies Adρ(w)(N) = |w| · N , is given in [26, § 2,
Proposition 2.2].

We say two representationsM andM ′ ofWD(k) are isomorphic if there is a linear
isomorphism f : M →M ′ which commutes with the action of WD(k). If M and M ′

are two representations ofWD(k), we have the direct sum representationM⊕M ′ and
the tensor product representation M ⊗M ′. The dual representation M∨ is defined
by the natural action on Hom(M,C), and the determinant representation det(M) is
defined by the action on the top exterior power. Since GL1(C) = C× is abelian, the
representation det(M) factors through the quotient W (k)ab → k× of WD(k).

We now define certain selfdual representations ofWD(k). We say the representation
M is orthogonal if there is a non-degenerate bilinear form

B : M ×M → C

which satisfies {
B(τm, τn) = B(m,n)

B(n,m) = B(m,n),

for all τ in WD(k).
We say M is symplectic if there is a non-degenerate bilinear form B on M which

satisfies {
B(τm, τn) = B(m,n)

B(n,m) = −B(m,n),

for all τ in WD(k).
In both cases, the form B gives an isomorphism of representations

f : M →M∨,
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whose dual
f∨ : M = M∨∨ →M∨

satisfies
f∨ = b · f, with b = the sign of B.

We now note:

Lemma 3.1. — Given any two non-degenerate forms B and B′ on M preserved by
WD(k) with the same sign b = ±1, there is an automorphism T of M which commutes
with WD(k) and such that B′(m,n) = B(Tm, Tn).

Proof. — Since M is semisimple as a representation of WD(k), we may write

M =
⊕
i

Vi ⊗Mi

as a direct sum of irreducible representations with multiplicity spaces Vi. Each Mi is
either selfdual or else M∨i ∼= Mj for some i 6= j, in which case dimVi = dimVj . So we
may write

M =

(⊕
i

Vi ⊗Mi

)
⊕

(⊕
j

Vj ⊗ (Pj + P∨j )

)
withMi irreducible selfdual and Pj irreducible but Pj � P∨j . Since any non-degenerate
form B remains non-degenerate on each summand above, we are reduced to the cases:
(a) M = V ⊗ N with N irreducible and selfdual, in which case the centralizer of

the action of WD(k) is GL(V );
(b) M = (V ⊗ P ) ⊕ (V ⊗ P∨), with P irreducible and P � P∨, in which case the

centralizer of the action of WD(k) is GL(V )×GL(V ).
In case (a), since N is irreducible and selfdual, there is a unique (up to scaling)

WD(k)-invariant non-degenerate bilinear form on N ; such a form on N has some sign
bN . Thus, giving a WD(k)-invariant non-degenerate bilinear form B on M of sign b
is equivalent to giving a non-degenerate bilinear form on V of sign b · bN . But it is
well-known that any two non-degenerate bilinear forms of a given sign are conjugate
under GL(V ). This takes care of (a).

In case (b), the subspaces V ⊗ P and V ⊗ P∨ are necessarily totally isotropic.
Moreover, there is a unique (up to scaling)WD(k)-invariant pairing on P ×P∨. Thus
to give aWD(k)-invariant non-degenerate bilinear form B onM of sign b is equivalent
to giving a non-degenerate bilinear form on V . But any two such forms are conjugate
under the action of GL(V )×GL(V ) on V × V . This takes care of (b) and the lemma
is proved.

When M is symplectic, dim(M) is even and det(M) = 1. When M is orthogo-
nal, det(M) is an orthogonal representation of dimension 1. These representations
correspond to the quadratic characters

χ : k× → 〈±1〉.
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Since char(k) 6= 2, the Hilbert symbol gives a perfect pairing

(−,−) : k×/k×2 × k×/k×2 → 〈±1〉.

We let C(d) be the one dimensional orthogonal representation given by the character
χd(c) = (c, d).

We also note the following elementary result:

Lemma 3.2. — If Mi is selfdual with sign bi, for i = 1 or 2, then M1⊗M2 is selfdual
with sign b1 · b2.

Proof. — If Mi is selfdual with respect to a form Bi of sign bi, then M1 ⊗ M2 is
selfdual with respect to the tensor product B1 ⊗B2 which has sign b1 · b2.

Next, assume that σ is a nontrivial involution of k, with fixed field k0. Let s be an
element of W (k0) which generates the quotient group

W (k0)/W (k) = Gal(k/k0) = 〈1, σ〉.

If M is a representation of WD(k), let Ms denote the conjugate representation, with
the same action of SL2(C) and the action τs(m) = sτs−1(m) for τ in W (k).

We say the representation M is conjugate-orthogonal if there is a non-degenerate
bilinear form B : M ×M → C which satisfies{

B(τm, sτs−1n) = B(m,n)

B(n,m) = B(m, s2n),

for all τ in WD(k). We say M is conjugate-symplectic if there is a non-degenerate
bilinear form on M which satisfies{

B(τm, sτs−1n) = B(m,n)

B(n,m) = −B(m, s2n),

for all τ inWD(k). In both cases, the form B gives an isomorphism of representations

f : Ms →M∨,

whose conjugate-dual

(f∨)s : Ms −−−−→ ((Ms)∨)s
ϕ(s2)−−−−→ M∨

satisfies
(f∨)s = b · f with b = the sign of B.

We now note:

Lemma 3.3. — Given two such non-degenerate forms B and B′ on M with the same
sign and preserved by WD(k), there is an automorphism of M which commutes with
WD(k) and such that B′(m,n) = B(Tm, Tn).

Proof. — The proof is similar to that of Lemma 3.1. As before, we may reduce to the
following two cases:
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