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COMPUTING WITH THE LAMBDA ALGEBRA 

Martin C. Tangora 
University of Illinois at Chicago 

and University of Oxford 

We are trying to compute the homotopy groups of spheres. This is an old 
problem now, and a very deep one; and a lecture on the subject is likely to 
be very technical. A number of the experts who know these technicalities are 
among the participants in this Congress. If I were to give a technical talk on 
my work, a few of you would already know what I was going to say before I 
had begun, but most of you would still not know what I had said after I had 
finished. Moreover, I have published elsewhere [6] a detailed account of several 
aspects of the problem that I am currently engaged in. 

Accordingly, I would like to confine myself here to some remarks that 1 
hope will be appreciated by everybody. On the one hand, I would like to 
give an idea of how we have managed to convert an effectively computable but 
realistically intractable problem into a tractable and really computable one. 
Here I will oversimplify the description, since the interested reader can refer to 
more detailed versions in the literature. 

On the other hand, I would like to share with you some reflections on the 
meaning of "proof' as it is variously used in our various disciplines. When is 
a proof really a proof? Let me begin with an assertion made some years ago 
by the American humorist Al Capp, or rather by a character in his comic strip 
Li'l Abner. 

Mammy Yokum's Principle : Good is better than evil, because it's nicer. 

Mammy Yokum's method of proof is well known in many other fields of 
human endeavor, but I submit that it has been neglected by mathematicians 
and computer scientists 
S.M.F. 
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There is a saying among mathematicians that only a graduate student really 
knows what a proof is. Perhaps it is necessary to have published an erroneous 
result in order to appreciate this. 

When we think we have a proof, we submit it to three tests. First, we try to 
find a mistake in it. Second, we submit it for publication, and the referee tries 
to find a mistake in it. Third, it is published, and everyone else tries to find a 
mistake in it. 

This leads me to what I think of as the Mammy Yokum Test for a proof in 
mathematics : a proof of a mathematical result is a good proof if nobody has 
found a mistake in it. 

Later we will offer a Mammy Yokum Test for the correctness of a computa
tion. 

1. ALGEBRAIC APPROACHES TO THE HOMOTOPY PROBLEM. 

Homotopy groups are algebraic objects occurring in, and defined in, a purely 
topological setting. The definition is a matter of topological spaces and contin
uous functions. However, a dozen years after the definition had been codified, 
the great difficulty of the problem of computing these groups had become ap
parent; Hopf complained around 1950 that almost every known result had been 
obtained by a different method [4]. 

Great progress was made in the 1950s and 1960s, but the improvement 
came at the expense of elaborate techniques, and the result was a bewildering 
confusion of data, in which a variety of patterns can be seen to interact in 
complicated and often mysterious ways. It is known, for example, that every 
possible positive integer occurs as the order of an element in the homotopy 
groups of spheres. I attach a little table of the homotopy groups of the 6-sphere, 
extracted from Toda's 1962 book [7], and invite you to try to extrapolate to 
the next few groups. 

The table gives, for each n, the order 0(n) of the homotopy group 7rn(S6). 
A zero denotes a trivial group, and oo denotes an infinite cyclic group. 
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0(n) 0 0 0 0 0 o o 2 2 24 0 o o 2 60 48 8 

n 16 17 18 19 20 21 22 23 24 25 
0(n) 144 2016 240 6 24 360 2016 16 288 8448 

More optimistically, Brown proved in 1957 that the homotopy groups of any 
finite complex are effectively computable [2]. However, Brown himself empha
sized that his algorithms were not intended to be of any practical use. 

Meanwhile, work of Steenrod, Cartan, Serre, and Adams led to the consider
ation of certain algebraic approximations to the homotopy problem, which are 
more amenable to computation. In particular the Adams spectral sequence con
verges to a filtered version of homotopy groups, and its Ei term is an algebraic 
object for which any finite range can be obtained from a variety of algorithmic 
processes. The issue becomes one of efficiency : all algorithms are effective, but 
some are more effective than others. 

We will confine ourselves now to the problem of computing the E2 term of the 
Adams spectral sequence for spheres, for p = 2. At least four different methods 
have been used. Since the E2 is the cohomology of the Steenrod algebra, it can 
be obtained as the homology of the cobar construction; but this construction is 
very large and the method is too slow and cumbersome. Adams used a minimal 
resolution, but this method seems awkward for large computations, although 
recently Bruner has had surprising success with it on a computer. The May 
spectral sequence is well suited to hand computation but to date has not been 
carried any further on a machine. 

We focus on a fourth method, which obtains the Adams E2 term as the 
homology of the lambda algebra. When this algebra was announced in the 
1960s, it did not seem very promising for computation, but Ed Curtis showed 
the way. George Whitehead has done some extensive calculations by hand, and 
the ideas of Curtis are amenable to algorithmic development and to machine 
computation. 
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2. THE LAMBDA ALGEBRA. 

For each prime p there is a lambda algebra. To simplify the discussion we 
will only consider p = 2. In this case A is an associative bi-graded differential 
algebra over the field of 2 elements, with a generator An in each non-negative 
dimension n. The algebra is not commutative, so your monomials are ordered 
products Xj where I = (¿1,2*2,... ,z5) is a sequence of non-negative integers. It 
is natural to write I as an abbreviated notation for A/. The algebra is defined 
by the relations 

XiÁ2i+n+l — 
j>0 

A(nJ)\i+n_j\2i+i+j (i > 0,n > 0) 

and the differential 

d(Xn-i) = 
3>l 

AfafiXn-j^Xj-x {n > 1) 

where A(n,j) denotes the binomial coefficient (n~j~ ) reduced mod 2. The bi-
grading of a monomial indexed by I may be written (r, s) where s, as above, 
is the length of 7, and r = i\ + ... -f V Using the relations we can express all 
monomials in terms of the "admissible" ones satisfying 2ij > ij - 1 (1 < j < 
5 -1) . 

Because of the non-commutativity, the algebra grows very fast. Just by 
counting the elements (using a computer, of course) we find an exponential 
growth rate of 1.79 with respect to the r grading. This was recently explained 
by Flajolet and Prodinger [3]. Since 1.7910 is about 345, we see that if you 
have an algorithm that is linear with respect to the number of elements in 
the admissible basis, and if you can compute E2 from dimension r = 30 to 
dimension r = 40 in a month, then you can go from 40 to 50 in about thirty 
years. This may be effective, but it is not effective enough. 

As anyone knows who has worked in computational linear algebra, the key 
is to choose the right basis. Curtis's method of choosing bases may have been 
motivated topologically, but it has the interesting effect of allowing us to set 
aside the vast majority of monomials as being irrelevant. The following discus
sion is intended to give a rough idea of what I mean by this, and to identify 
the properties of the lambda algebra that make this possible. 
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