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L E M P E R T M A P P I N G S 
A N D H O L O M O R P H I C M O T I O N S IN C n 

by 

Kari Astala, Zoltan Balogh & Hans Martin Reimann 

Abstract. — The purpose of this note is twofold: to discuss the concept of holomorphic 
motions and phenomena of Mane-Sad-Sullivan type in several complex variables and 
secondly, to compare the different notions of Beltrami differentials in CR-geometry 
which have appeared in [4] and [7]. 

1. Introduction 

Holomorphic motions in the complex plane C are isotopies of subsets A C C for 
which the dependence on the "time" parameter is holomorphic. This simple notion has 
been important in explaining a number of different questions in complex analysis, in 
particular the rigidity phenomena in complex dynamics and the role of quasiconformal 
mappings in holomorphic deformations. 

It was Mane, Sad and Sullivan [9] who first realized that for time-holomorphic iso­
topies one can forget all smoothness requirements in space variables and thus produce 
almost automatic rigidity results in various contexts. Given a subset A C C , it is 
simply enough to define a holomorphic motion of A as a mapping / : A x A —> C , 
where A = {A € C : |A| < 1 } , such that 

(i) for any fixed a G A, the map A —> / ( A , a) is holomorphic in A 
(ii) for any fixed A E A , the map a -> / ( A , a ) = f\(a) is an injection and 

(iii) the mapping fo is the identity on A. 

Then / is automatically continuous in A x C and the restrictions f\(.) are qua-
sisymmetric mappings [9]; in case A = C they are quasiconformal with the precise 
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bound on the dilatation 

( i ) K(fx) < 1 + |A| 
1 - | A | -

The picture was then completed by Slodkowski [12] who proved the so called Gener­
alized A-lemma, that a holomorphic motion of any set A c C extends to a motion of 
the whole C. 

In this setting it is natural to look for similar phenomena in several complex vari­
ables, when the sets moving are of higher dimension. However, one quickly sees that 
the simple minded generalization does not work: Let, for example, S(x) — x/\x\ for 
x € R \ { 0 } , S(0) = 0 and define 

fx(z,w) = (* + XS(Re{w}),w). 

Then f\ is holomorphic in A and injective but not even continuous in C 2 . 

Our first goal in this note is to introduce the proper notion or point of view to 
holomorphic motions in several complex variables and then show the existence of the 
first nontrivial examples, results of Mane-Sad-Sullivan type. We expect that similar 
phenomena occur, in fact, in much larger setups. 

Remark. — The generalizations to the case where the parameter space is higher di­
mensional were studied by Adrien Douady in his work [3]. 

If there are to be holomorphic motions in C n , the one-dimensional theory suggests 
that they are connected to a notion of quasiconformality. Therefore recall that in 
several complex variables the appropriate concepts are the quasiconformal mappings 
on CR-structures [4], or mappings on boundaries of pseudoconvex domains which 
firstly are contact transforms, i.e. preserve the horizontal (complex) lines of the 
tangent spaces 

HvdD = TvdD n JTvdD 
where J is the complex structure as a mapping of T p C 2 , and secondly, are there 
quasiconformal with respect to the corresponding Levi Form, i.e. 

(2) K(p) 
sup{L(F*X,F*X) : X G HpdD, L(X,X) = 1} 
inî{L{F*X,F*X) : X G HpdD, L(X,X) = 1} 

< K 

for all p G dD. 
The same direction is, actually, suggested also by the approach of Slodkowski [12]. 

He viewed holomorphic motions (or their graphs) as disjoint analytic disks in C 2 . 
Namely given such a motion / : A x A —> C each point a e A defines a holomorphic 
disk Da C C 2 , a holomorphic image of A, by 

(3) Da = { (A , / (A ,a ) ) : AG A } 

and these disks are clearly pointwise disjoint. Conversely, given a family of analytic 
disks of the form (3) with Da fl = 0 when a ^ 6, they define a holomorpic 
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motion \I>(A,/(0, a)) = /(A, a). (The extension of a given motion was then obtained 
by studying certain totally real tori whose polynomial hulls were shown to consists of 
disjoint families of suitable analytic disks.) 

Interpreting the Mane-Sad-Sullivan result in the language (3) of disjoint analytic 
disks, for a motion of the whole complex plane the disks Day a G C, fill in the domain 
A x C. And when we move along the disks with A, in the transverse direction i.e. on 
the complex lines of the corresponding tangent spaces of <9A(|A|) x C the mappings 
(0,a) i—y (A,/(A, a)) are now quasiconformal by the original A-lemma. 

This picture makes it very suggestive that similar phenomena should occur in other 
situations in C 2 or C n as well. That is, for suitable families of analytic disks one 
should expect that moving holomorphically along these disks yields automatic qua-
siconformality in transverse horizontal directions, quasiconformality in the Koranyi-
Reimann sense, with the bound (1) on the dilatation. The philosophy of holomorphic 
motions in C n would then be not that there is one strict definition of these motions 
but rather that there are several natural situations that share the common features 
described here. 

To show that there do exist nontrivial holomorphic motions in the above sense in 
C 2 (the choice n = 2 is made for simplicity) we make use of the theory developed by 
Lempert [5]-[8] and consider bounded strictly R-convex smooth subdomains D C C 2 

and their generalizations the strictly linearly convex domains. The latter class consists 
of smooth bounded domains with the property that for each boundary point p € dD 
the horizontal space HpdD does not intersect D\{p) and that HpdD has precisely 
first order contact with dD at p. That is, there exists c > 0 such that 

dist(<?, HpdD) > c • dist(p,#) 2, qE D. 

In particular, strictly convex domains are strictly linearly convex which in turn are 
strictly pseudoconvex. 

As shown by Lempert in strictly linearly convex domains extremal Kobayashi disks 
are especially well behaved. For this recall that in any bounded domain containing 
the origin the Kobayashi indicatrix / of D is defined by 

/ = { / ' (0 ) : / : A D is holomorphic and / ( 0 ) = 0 } . 

If v G dly a holomorphic mapping / = fv : A -> D such that / (0 ) = 0 and 
/ ' ( 0 ) = v is then called an extremal map corresponding to the vector v. In strictly 
linearly convex domains extremal disks are uniquely determined by t>, a fact no longer 
true for general pseudoconvex domains. This enables us to simply define 

* : A x(A,t;) b C 2 , *(A,t;) 
/ . (A) 

A 
and we can describe a full counterpart of the Mahe-Sad-Sullivan result, a holomorphic 
motion of dl. 
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Theorem 1. — Let D be a strictly linearly convex domain containing the origin and 
^ : A x dl -> C 2 be defined by ^(X.v) = A _ 1 / i ; (A) . Tften ^ satisfies the following 
properties: 

(1) * (0 , -) = Id | 0 7 ; 
(2) : A -> C 2 ¿5 holomorphic; 

(3) *(A, •) : <97 -> A\ is a contact mapping where A\ — \£(A,<97) is the boundary 

of a strictly pseudoconvex domain. In particular, \£ is continuous in A x dl; 
(4) \£(A, •) : dl —>• A\ is K{\)-quasiconformal with K{X < 1 + |A 

1 - A ' A € A. 

We should mention that statement (4) is the new result proven here; statements 
(1), (2) and (3), due to Lempert, are being included for the sake of completeness. 
To obtain the optimal dilatation bound we turn to our second goal, to compare 
the different notions of Beltrami differentials in contact geometry and CR-manifolds, 
introduced respectively, by Koranyi and Reimann [4] and Lempert [7]. This with 
required preliminary material will be presented in the next section. 

2. Inner actions and Beltrami differentials 

It will be convenient start with a version of the Riemann mapping theorem in C n 

due to Lempert ([5], [6]), and use the formalism introduced by Semmes [11]. These 
Riemann mappings preserve the complex structure to some extent but are flexible 
enough to yield general existence results. In more precise terms, Lempert considered 
mappings p : B D from the unit ball in C n onto domains D C C n containing the 
origin which satisfy the following three requirements: 

(1) /0 : i5\{O}—>>Z)\{0}isa smooth diffeomorphism and p : B —> D is bilipshitz; 
(2) p restricted to any complex line through the origin is holomorphic; 
(3) p restricted to the boundary of any ball Br centered at the origin and of radius 

0 < r < 1 is contact, i.e. 

p*HdBr = HdDr (Dr = pBr). 

For the last condition recall that when a domain is strictly pseudoconvex the hor­
izontal tangent bundle HOD = TdD n JTdD, where J is the complex structure, 
defines a contact structure on the boundary. 

In what follows a mapping with the above properties (l)-(3) will be called a Lem­
pert mapping. The basic existence result is then: 

Theorem A (Lempert). — Let D be a strictly linearly convex domain. Then there 
exists a Lempert mapping p : B —> D. 

A very nice exposition of the properties of the Lempert mappings was given by 
Semmes in [11]. The statement and proof of Theorem A, for example, may be found 
in [11] in the case of strictly convex domains and it is based essentially on the results 
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