
SÉMINAIRE N. BOURBAKI

BERNARD CHAZELLE
The PCP theorem
Séminaire N. Bourbaki, 2001-2002, exp. no 895, p. 19-36.
<http://www.numdam.org/item?id=SB_2001-2002__44__19_0>

© Association des collaborateurs de Nicolas Bourbaki, 2001-2002,
tous droits réservés.

L’accès aux archives du séminaire Bourbaki (http://www.bourbaki.
ens.fr/) implique l’accord avec les conditions générales d’utilisa-
tion (http://www.numdam.org/legal.php). Toute utilisation commer-
ciale ou impression systématique est constitutive d’une infraction
pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SB_2001-2002__44__19_0
http://www.bourbaki.ens.fr/
http://www.bourbaki.ens.fr/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


THE PCP THEOREM

[after Arora, Lund, Motwani, Safra, Sudan, Szegedy]

by Bernard CHAZELLE

Seminaire BOURBAKI

54e annee, 2001-2002, n° 895, p. 19 a 36
Novembre 2001

1. INTRODUCTION

The notion of interactive proof systems evolved out of cryptography and computa-
tional group theory. The cryptographic context is best explained through a little tale

(perhaps one day to come true). One fine morning, one of your esteemed colleagues
wakes up with, in his head, a crisp, concise, complete proof of Riemann’s Hypothesis!
Wisdom being one of his many qualities, he is not about to post his proof on the
internet. Paranoia being another one, he is not even willing to reveal a single bit of
information about the proof; that is, besides its conclusion that the RH is true. Is

there any way for your colleague to convince you and the rest of the mathematical

community that, indeed, he has a correct proof? Of course, one needs to define what

exactly is meant by not "revealing a single bit". That is the subject of zero-knowledge
cryptography.

The PCP theorem addresses a simpler variant: Can your colleague write down his

proof in such a way that, were you to peek into it at a constant number of randomly
chosen spots, you would leave utterly convinced of its validity? In other words, can
he encode the proof as a string of bits so that: (i) a correct proof will never fail to
convince you; (ii) an incorrect one will fool you with only a negligible probability?
The catch is, you will be allowed to look at only a constant number of bits chosen at
random. The PCP theorem asserts the existence of such an encoding. It is striking
that the number of lookups can be kept constant regardless of the length of the proof.
In fact, if you can put up with a failure rate slightly above 1/2, i.e., accept a wrong
proof half the time, but still never reject a correct one, then the number of bits can
be reduced to 3. On the other hand, if you are allowed to read as many bits as are
needed to store, say, two lines of this article, the probability of failure drops to 10-l00,
A key point is that the new proof can be derived from the old one purely syntactically.
In other words, one can write a compiler to translate the proof mechanically without
any knowledge of mathematics. Furthermore, the new proof is not much longer than
the previous one.



20

A common initial reaction to the PCP theorem is that it must be either wrong or

trivial. Why wrong? It seems to imply that any flaw in the proof should spread itself
all over the place, so as to be caught immediately in a random peek. But, how can so
much information be stored in so few bits? Here is how: If the proof is correct, print
it as such; if it is wrong, then intersperse the statement 2 + 2 = 3 at every other step.
The problem with that encoding is that a correct proof will not convince anyone.
The beauty of the PCP theorem is not that flaws are caught so easily: it is that the

mere absence of a flaw is persuasive in and of itself. There is nothing amazing about

catching a liar’s lie. But it is quite a feat to hear a true story from a congenital liar
and end up believing it.

2. THE PCP VIEW OF NP

A Turing machine is a computer model whose main feature, for our purposes, is to
be universal: in particular, whatever it can compute in time polynomial in the length
of the input is believed to constitute what is tractable in any (non-quantum) model.
The class P consists of the sets for which membership can be decided by a Turing
machine in polynomial time. For example, the set of singular square integer matrices
is in P, because determinants can be computed in a polynomial number of steps. The
class NP includes the sets for which membership can be verified in polynomial time.
For instance, the set of polynomials in ..., Xn~ with at least one zero in 
is in NP. The reason is that, given a polynomial f and a point x E one can

check if f (x) = 0 in time polynomial in the number of bits needed to represent f. To
find such a zero from scratch seems more difficult (to put it mildly), and it is widely
conjectured that P ~ NP. Within computer science, this open question dwarfs all
others in importance.
A 3-CNF formula is a conjunction of clauses, each one consisting of three lit-

erals ; for example, (vi v3) ~ (v2 V v3 V ~ v4). It is satisfiable if some

true/false assignment of the v2’s makes the formula true. The one above is, whereas

(vi V vi V fi) A (T vi V V is not. The set of satisfiable 3-CNF formulas is

called 3-SAT. A classical result of Cook and Levin says that 3-SAT is NP-complete,
meaning that, not only it is in NP, but deciding membership in any NP set can be
reduced to testing the satisfiability of a 3-CNF. The Cook-Levin theorem shows that
to understand 3-SAT is to understand all of NP.

Many other sets are known to be NP-complete: for example, the set of 3-colorable

graphs. (A graph is 3-colorable if its nodes can be colored red, white, and blue with no

edge sharing the same color.) The existence of NP-complete sets brings breathtaking
universality into the computing picture. It implies that anyone who can quickly color

graphs can also solve algebraic equations over finite fields, factor integers, compute
discrete logarithms, find short vectors in lattices, determine the largest clique in a

graph, etc.



To formalize what a mathematical proof has to do with NP takes some effort, but
the intuition is clear. In any reasonable axiomatic system, this set is in NP:

{ (T.1 n) T is a theorem with a proof of size at most n~,

where denotes the 0~1 string formed by writing the theorem T in binary in the
axiomatic system and appending n ones at the end. A prover can guess a proof of

length at most n, and the verifier can then check it in time polynomial in its length.
The class NP can be described in the language of proofs. If L E NP then, given

any x E L, there exists a short proof, i.e., a polynomial-time computation, that x
indeed belongs to L; for example, the solution of an algebraic equation. Conversely,
if x g L, then no proof can convince anyone that x is in L. Probabilistically checkable

proofs (PCP) add a small twist to this view: randomization. A PCP system for a

set L consists of a string of bits (the proof) and a Turing machine with access to
random bits (the verifier). Given an input x of n bits, the verifier generates r (n)
random bits(l); then it looks up q(n) bits of the proof at locations of its choice. The
lookups are done all at once nonadaptively. Finally, after a polynomial amount of

(deterministic) computation, the verifier must either accept or reject the proof. The
class of sets L that satisfy the two requirements below is denoted by PCP[r(n), ~(?~)]:

- Given any x E L, there is a proof that causes the verifier to accept x with

probability 1.
- Given any x ~ L, every proof is rejected with probability at least 1/2.
The functions r and q are called the random-bit complexity and query-bit complexity,

respectively. To alleviate the notation, both of them are understood up to a constant
factor. If r(n) = 0(log n), the number of distinct random strings is polynomial and, by
running the verifier on all of them, it is immediate that PCP [log n, 1] C NP. Proving
the reverse inclusion requires a great deal of ingenuity. The purpose of this article is
to explain the proof at a conceptual level, leaving mathematical technicalities aside.
The PCP theorem states that

Note that the proof size can be assumed to be polynomial since at most 
bits of the proof have a chance of ever being read. The PCP theorem can

be restated in a way that highlights its "error-spreading" aspect. Given any 3-CNF
formula ~ on n variables, there exists another one, denoted by ~, which contains 
variables and is satisfiable if and only if ~ is. Furthermore, if W is not satisfiable, then
no truth assignment can satisfy more than a fraction 1 - é of its clauses, for some
constant é > 0. Finally, W can be derived from ~ in polynomial time.

~ 1 ~ Throughout our discussion, random points or numbers are drawn uniformly, independently from
a set that is always clearly understood from the context; in this case the set is {0,1}.



It is instructive to see how this follows from (1), because the argument anticipates
aspects of the proof of the PCP theorem. Consider a PCP system for ~. Among the
2r~n~ possible random strings, some lead to acceptance, others (possibly) to rejection.
Given such a string s, let IIi,..., IIq be the bits of the proof read by the verifier. (The
locations of these bits depend on s but not on the proof itself.) Let ~g be a Boolean
formula that evaluates to true if and only if 03A01, ... , IIq lead to acceptance: 03A6s has

q = 0(1) variables, each one corresponding to one of the bits read. It is routine to

convert into a constant size 3-CNF formula ~s by adding a few auxiliary variables
if necessary. The formula W = ns ~s fits the bill. To see why, consider the (only
interesting) case: If 03A6 is not satisfiable, then regardless of the proof, i.e., of the truth
assignment of the variables, at least half of these formulas are false and, hence,
so is a constant fraction of the clauses in ~. D

This characterization of the PCP theorem, which interestingly makes no mention
of proofs, verifiers, or even randomization, points to the connection between PCP and
inapproximability. Indeed, it implies that it is NP-complete to distinguish between a
satisfiable formula and one for which no truth assignment satisfies at least a fraction
1 - é of the clauses. Another way to look at this result is that if we set out to

maximize the number of satisfied clauses in a formula, then we cannot hope to find
an approximate solution within a factor 1 - é of the maximum in polynomial time,
unless P = NP. (Other applications are mentioned in the Historical Notes section.)

Remark 2.1. - From a mathematician’s perspective, the PCP theorem might appear
to focus on the "uninteresting" part of mathematics. It is a restatement of NP, not
of P; as such, it says nothing about the difficulty of finding proofs. Also, it treats

readers as mere fact-checkers. But mathematicians read proofs not so much to find

bugs in them but to understand the ideas behind them. This mental picture, so vital
to mathematics, is absent from the PCP viewpoint. Within the restrictive framework
of verification, the PCP theorem is an impressive statement nevertheless.

Remark 2.2. - The proof of the PCP theorem is a mix of elementary algebra and

probability theory; it is long and technical but not particularly difficult. Its originality
lies elsewhere: in two places to be precise. One is its use of computational self-

reducibility. Instead of keeping the usual separation between proving and verifying,
the verifier’s work is itself re-encoded as part of the proof: the reader of a proof
is made partly its author! The other intriguing aspect of the PCP theorem is its

ingenious use of error-correcting codes to express not just signals and bit streams (in
typical coding theory fashion) but mathematical proofs, instead.

We close this section presenting a short, archetypical motif of the proof. Given a
3-CNF formula ~, we wish to design a PCP system to verify its satisfiability. The
idea is to construct a large family of multivariate polynomials fz i such that: if ~ is

satisfiable, then any satisfying truth assignment corresponds to a common zero to all


