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THE CONNES CHARACTER FORMULA
FOR LOCALLY COMPACT SPECTRAL TRIPLES

by Fedor SUKOCHEV & Dmitriy ZANIN

Abstract. — A fundamental tool in noncommutative geometry is Connes’ character
formula. This formula is used in an essential way in the applications of noncommuta-
tive geometry to index theory and to the spectral characterisation of manifolds.

A non-compact space is modeled in noncommutative geometry by a non-unital
spectral triple. Our aim is to establish the Connes character formula for non-unital
spectral triples. This is significantly more difficult than in the unital case and we
achieve it with the use of recently developed double operator integration techniques.
Previously, only partial extensions of Connes’ character formula to the non-unital case
were known.

In the course of the proof, we establish two more results of importance in noncom-
mutative geometry: an asymptotic for the heat semigroup of a non-unital spectral
triple, and the analyticity of the associated ζ-function.

We require certain assumptions on the underlying spectral triple, and we verify
these assumptions in the case of spectral triples associated to arbitrary complete
Riemannian manifolds and also in the case of Moyal planes.

Résumé. (Formule du caractère de Connes pour triplets spectraux localement compacts)
– Un outil fondamental en géométrie non commutative est la formule des caractères
de Connes. Cette formule est utilisée de manière essentielle dans les applications de
la géométrie non commutative à la théorie de l’indice et à la caractérisation spectrale
des variétés.

Un espace non compact est modélisé en géométrie non commutative par un triplet
spectral sans unité. Notre objectif est d’établir la formule des caractères de Connes
pour les triplets spectraux sans unité. Ceci est nettement plus difficile que dans le cas
unitaire et nous y parvenons grâce à l’utilisation de techniques récentes d’intégration
dites à double opérateur. Auparavant, seules des extensions partielles de la formule
des caractère de Connes au cas non unitaire étaient connues.

Dans la preuve, nous établissons deux autres résultats importants en géométrie non
commutative : une formule asymptotique pour le semi-groupe de chaleur d’un triplet
spectral sans unité, et l’analyticité de la fonction ζ associée.

© Astérisque 445, SMF 2023
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Nous exigeons certaines hypothèses sur le triplet spectral sous-jacent que nous pou-
vons vérifier pour tout triplet spectral associé à une variétés riemannienne complète
ou à un plan de Moyal.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

One of the fundamental tools in noncommutative geometry is the Chern character.
The Connes Character Formula (also known as the Hochschild character theorem)
provides an expression for the class of the Chern character in Hochschild cohomology,
and it is an important tool in the computation of the Chern character. The formula
has been applied to many areas of noncommutative geometry and its applications
such as the local index formula [23], the spectral characterisation of manifolds [22]
and recent work in mathematical physics [16].

In its original formulation, [20], the Character Formula is stated as follows: Let
(A , H,D) be a p-summable compact spectral triple with (possibly trivial) grading Γ

(as defined in Section 2.2). By the definition of a spectral triple, for all a ∈ A the
commutator [D, a] has an extension to a bounded operator ∂(a) on H. Furthermore, if
F = χ(0,∞)(D)−χ(−∞,0)(D) then for all a ∈ A the commutator [F, a] is a compact op-
erator in the weak Schatten ideal Lp,∞. For simplicity assume that ker(D) = {0}, and
now consider the following two linear maps on the algebraic tensor power A⊗(p+1),
defined on an elementary tensor c = a0 ⊗ a1 ⊗ · · · ⊗ ap ∈ A⊗(p+1) by,

Ch(c) :=
1

2
Tr(ΓF [F, a0][F, a1] · · · [F, ap])

and
Ω(c) := Γa0∂a1∂a2 · · · ∂ap.

Then the Connes Character Formula states that if c is a Hochschild cycle (as defined
in Section 2.2.4) then

Trω(Ω(c)(1 +D2)−p/2) = Ch(c)

for every Dixmier trace Trω. In other words, the multilinear maps Ch and
c 7→ Trω(Ω(c)(1 +D2)−p/2) define the same class in Hochschild cohomology.

There has been great interest in generalizing the tools and results of noncommu-
tative geometry to the “non-compact” (i.e., non-unital) setting. The definition of a
spectral triple associated to a non-unital algebra originates with Connes [21], was fur-
thered by the work of Rennie [47, 48] and Gayral, Gracia-Bondía, Iochum, Schücker
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2 CHAPTER 1. INTRODUCTION

and Varilly [28]. Earlier, similar ideas appeared in the work of Baaj and Julg [1]. Ad-
ditional contributions to this area were made by Carey, Gayral, Rennie, and the first
named author [10, 11]. The conventional definition of a non-compact spectral triple is
to replace the condition that (1 +D2)−1/2 be compact with the assumption that for
all a ∈ A the operator a(1 +D2)−1/2 is compact.

This raises an important question: is the Connes Character Formula true for locally
compact spectral triples?

In this paper we are able to provide an affirmative answer to this question, pro-
vided that one assumes certain regularity properties on the spectral triple. There is
a substantial difference between the theories of compact and non-compact spectral
triples, in particular issues pertaining to summability are more subtle. We achieve
our proof of the non-unital Character Formula using recently developed techniques of
operator integration.

1.2. The main results

In this paper we prove three key theorems (Theorems 1.2.2, 1.2.3 and 1.2.5) and a
new result concerning universal measurability (Theorem 1.2.7).

Essential to our approach is a certain set of assumptions on a spectral triple to be
outlined below. The notion of a spectral triple, and all of the corresponding notations
are explained fully in Section 2.2. By definition, if (A , H,D) is a spectral triple then
for a ∈ A , the notation ∂(a) denotes the bounded extension of the commutator
[D, a], and for an operator T on H which preserves the domain of D, δ(T ) denotes
the bounded extension of [|D|, T ] when it exists. The notation Lr,∞, r ≥ 1, denotes
the ideal of compact operators T whose singular value sequence {µ(n, T )}∞n=0 satisfies
µ(n, T ) = O(n−1/r). The norm ∥ · ∥1 is the trace-class norm.

Our main assumption on (A , H,D) is as follows:

Hypothesis 1.2.1. — The spectral triple (A , H,D) satisfies the following conditions:

(i) (A , H,D) is a smooth spectral triple.
(ii) There exists p ∈ N such that (A , H,D) is p-dimensional, i.e., for every a ∈ A ,

a(D + i)−p ∈ L1,∞,

∂(a)(D + i)−p ∈ L1,∞.

(iii) for every a ∈ A and for all k ≥ 0, we have∥∥∥δk(a)(D + iλ)−p−1
∥∥∥

1
= O(λ−1), λ→∞,∥∥∥δk(∂(a))(D + iλ)−p−1

∥∥∥
1

= O(λ−1), λ→∞.

Condition 1.2.1.(i) is well-known and widely used in the literature. The notion of
“smoothness” that we use here is identical to what is sometimes referred to as QC∞

(see Definition 2.2.7).
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1.2. THE MAIN RESULTS 3

Condition 1.2.1.(ii) is also widely used, but we caution the reader that else-
where in the literature an alternative definition of dimension is often used: where
(A , H,D) is said to be p-dimensional if for all a ∈ A we have a(D+ i)−1 ∈ Lp,∞ and
∂(a)(D + i)−1 ∈ Lp,∞. The definition of dimension in 1.2.1.(ii) is strictly stronger,
and we discuss this issue in 2.2.3.

Condition 1.2.1.(iii) is new and specific to the locally compact situation. Indeed, if
A is unital then 1.2.1.(iii) is redundant, as it follows from 1.2.1.(ii).

In order to show that Hypothesis 1.2.1.(iii) is reasonable, we prove that it is satisfied
for spectral triples associated to the following two classes of examples:

(i) Noncommutative Euclidean spaces, a.k.a. Moyal spaces. (Section 3.3)
(ii) Complete Riemannian manifolds. (Section 3.4).

In deciding on the conditions of Hypothesis 1.2.1, we have avoided the assumption
that the spectral dimension of (A , H,D) is isolated: this is an assumption made in
[31], [23] and in some parts of [11].

Our first main result is established in Section 4.5. This result provides an asymp-
totic estimate of the trace of the heat operator s 7→ e−s

2D2

, and we remark that the
following theorem is new even in the compact case.

Theorem 1.2.2. — Let p ∈ N and let (A , H,D) be a spectral triple satisfying Hypoth-
esis 1.2.1. If c ∈ A⊗(p+1) is a Hochschild cycle, then

(1.1) Tr(Ω(c)(1 +D2)1−
p
2 e−s

2D2

) =
p

2
Ch(c)s−2 +O(s−1), s ↓ 0.

Note that we do not require that the parity of the dimension of p match the parity
of the spectral triple (i.e., p can be an odd integer while (A , H,D) has a nontrivial
grading, and similarly p can be even while (A , H,D) has no grading).

Our second main result proves the analytic continuation of the ζ-function associ-
ated with the operator (1+D2)−

1
2 . This result recovers all previous results concerning

the residue of the ζ function on a Hochschild cycle.

Theorem 1.2.3. — Let p ∈ N and let (A , H,D) be a spectral triple satisfying Hypoth-
esis 1.2.1. If c ∈ A⊗(p+1) is a Hochschild cycle, then the function

(1.2) ζc,D(z) := Tr(Ω(c)(1 +D2)−
z
2 ), ℜ(z) > p

is holomorphic, and has analytic continuation to the set {ℜ(z) > p − 1} \ {p}. The
point z = p is a simple pole of the analytic continuation of ζc,D, with corresponding
residue equal to pCh(c).

To prove our analogue of the Character Theorem in the unital setting, we require
an additional locality assumption on the Hochschild cycle c. The use of locality in
noncommutative geometry was pioneered by Rennie in [48].

Definition 1.2.4. — A Hochschild cycle c =
∑m
j=1 a

j
0 ⊗ · · · ⊗ ajp ∈ A⊗(p+1) is said to

be local if there exists a positive element ϕ ∈ A such that ϕaj0 = aj0 for all 1 ≤ j ≤ m.
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4 CHAPTER 1. INTRODUCTION

For example, if X is a manifold and A = C∞c (X) is the algebra of smooth com-
pactly supported functions on X, then every Hochschild cycle is local since we may
choose ϕ to be smooth and equal to 1 on the union of the supports of {aj0}mj=1.

Our final result is the Connes Character Formula for locally compact spectral
triples. In the compact case, our result recovers all previous results of this type (e.g.,
[30, Theorem 10.32], [2, Theorem 6], [12, Theorem 10] and [15, Theorem 16]).

Theorem 1.2.5. — Let p ∈ N and let (A , H,D) be a spectral triple satisfying Hypoth-
esis 1.2.1. If c ∈ A⊗(p+1) is a local Hochschild cycle, then

(1.3) φ(Ω(c)(1 +D2)−
p
2 ) = Ch(c),

for every normalized trace φ on L1,∞.

The notion of a normalized trace on L1,∞ is recalled in Subsection 2.1.3. The
purpose of the Connes Character Formula is to compute the Hochschild class of the
Chern character by a “local” formula, here stated in terms of singular traces.

A consequence of Theorem 1.2.5 being stated for arbitrary normalized traces
on L1,∞ is that we can deduce precise behavior of the distribution of eigenvalues of
the operator Ω(c)(1 +D2)−p/2:

Corollary 1.2.6. — Let (A , H,D) satisfy Hypothesis 1.2.1, and let c ∈ A⊗(p+1) be a
local Hochschild cycle. Then the sequence {λ(k,Ω(c)(1 +D2)−p/2)}∞k=0 of eigenvalues
of the operator Ω(c)(1 +D2)−p/2 arranged in non-increasing absolute value satisfies:

n∑
k=0

λ(k,Ω(c)(1 +D2)−p/2) = Ch(c) log(n) +O(1), n→∞.

The above corollary is an immediate consequence of Theorem 1.2.5 and Theo-
rem 2.1.5.

The main technical innovation of this paper concerns a certain integral represen-
tation for the difference of complex powers of positive operators, which originally
appeared in [33] and which is reproduced here as Theorem 5.2.1.

An operator T ∈ L1,∞ is called universally measurable if all normalized traces
on L1,∞ take the same value on T . A new result of this paper, and a crucial component
of our proof of Theorem 1.2.5, is the following:

Theorem 1.2.7. — Let 0 ≤ V ∈ L1,∞ and let A ∈ L∞. Define the ζ-function:

ζA,V (z) := Tr(AV 1+z), ℜ(z) > 0.

If there exists ε > 0 such that ζA,V admits an analytic continuation to the set
{z : ℜ(z) > −ε} \ {0} with a simple pole at 0, then for every normalized trace φ

on L1,∞ we have:
φ(AV ) = Resz=0ζA,V (z).

In particular, AV is universally measurable.
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1.3. CONTEXT OF THIS PAPER 5

Theorem 1.2.7 is a strengthening of an earlier result [55, Theorem 4.13], and a
complete proof is given in Section 5.5.

1.3. Context of this paper

Connes’ Character Formula dates back to Connes’ 1995 paper [20]. There the char-
acter theorem was discovered in order to “compute by a local formula the cyclic coho-
mology Chern character of (A , H,D).” Connes’ work initiated a lengthy and ongoing
program to strengthen, generalize and better understand the Character Formula.

Closely linked to the Character Formula is the Local Index Theorem of Connes
and Moscovici [23], and much of the work in this field was from the point of view of
index theory. Among the approaches to generalizing Connes character theorem, there
is [2] by Benamuer and Fack, and [12] by Carey, Philips, Rennie and the first named
author.

Instead of considering traces on L1,∞, [12] deals with Dixmier traces on the Lorentz
space M1,∞. Due to an error in the statement of Lemma 14 of [12] which invalidates
the proof in the p = 1 case, a followup paper [15] was written. In [15], the Character
Formula is proved in the compact case for arbitrary normalized traces (rather than
Dixmier traces).

During the creation of the present manuscript an oversight was located in [15]:
in that paper the case where D has a nontrivial kernel and (A , H,D) is even was
not handled correctly. It was incorrectly assumed in [15, Case 3, page 20] that if
(A , H,D) is an even spectral triple with grading Γ, then so is

(A , H, (χ[0,∞)(D)− χ(−∞,0)(D))(1 + |D|2)1/2).
This is false if the kernel of D is nontrivial, since then it is not necessarily the case
that χ[0,∞)(D)− χ(−∞,0)(D) anticommutes with Γ. The outcome of this oversight is
that the proof of the Character Theorem as given in [15] is incomplete. This oversight
can be corrected by using the well-known “doubling trick” that was already present
in [12, Definition 6]. The present work supersedes that of [15], and so rather than
submit an erratum we have decided to instead supply a complete proof here, in a
more general setting.

All of the work mentioned so far in this section applies exclusively in the compact
case. Adapting the tools of noncommutative geometry to the locally compact case
involves substantial difficulties and this task has been heavily studied by multiple
authors over the past few decades: as a small sample of this body of work we mention
[47, 48, 28, 29, 10, 11] and more recently work by Marius Junge and Li Gao concerning
noncommutative planes.

In 2000, Professor Nigel Higson published [31]: a detailed exposition of the local
index theorem, including in the final appendix a claimed proof of the Connes Char-
acter Formula in the non-unital setting. Higson’s work was a major inspiration for
the present paper, since it is now understood and acknowledged by Higson that the
claimed proof of the Character Formula [31, Theorem C.3] has a gap. This paper
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6 CHAPTER 1. INTRODUCTION

arose from our efforts to produce a correct statement and complete proof of the Char-
acter Formula in the non-unital setting using recently developed methods of Double
Operator Integration theory.

After circulating a draft of our manuscript Carey and Rennie pointed out that
there was a different way to obtain a similar result on the Hochschild class using
[11] (which is based on [14]). It is proved in these papers that the “resolvent cocycle”
introduced there represents the cohomology class of the Chern character. From that
point of view one may obtain a different representative of the Hochschild class of
the Chern character using residues of zeta functions under weaker hypotheses on the
Hochschild chains and substantially stronger summability conditions on the spectral
triple. For Hochschild chains satisfying some additional conditions, but not requiring
locality as employed here, Carey and Rennie also have a Dixmier trace formula for
the Hochschild class of the Chern character evaluated on such Hochschild chains.

1.4. Structure of the paper

This paper is structured as follows:
— Chapter 2 is devoted to preliminary definitions and concepts: we introduce the

relevant definitions for operator ideals, traces, spectral triples, operator valued
integrals and double operator integrals.

— Chapter 3 provides important technical properties of spectral triples. In Sec-
tion 3.3 we prove that Hypothesis 1.2.1 is satisfied for the canonical spectral
triple associated to noncommutative Euclidean spaces Rpθ, and in Section 3.4 we
show that the hypothesis is satisfied for Hodge-Dirac spectral triples associated
to arbitrary complete Riemannian manifolds.

— Chapter 4 contains the proof of Theorem 1.2.2.
— Chapter 5 contains the proofs of Theorems 1.2.3, 1.2.7 and 1.2.5.
— Finally, an appendix is included to collect some of the lengthier computations.
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CHAPTER 2

PRELIMINARIES

2.1. Operators, ideals and traces

2.1.1. General notation. — Fix throughout a separable, infinite dimensional complex
Hilbert spaceH. We denote by L∞ the algebra of all bounded operators onH, with op-
erator norm denoted ∥·∥∞. For a compact operator T on H, let λ(T ) := {λ(k, T )}∞k=0

denote the sequence of eigenvalues of T arranged in order of non-increasing magni-
tude and with multiplicities. Similarly, let µ(T ) := {µ(k, T )}∞k=0 denote the sequence
of singular values of T , also arranged in non-increasing order with multiplicities. The
kth singular value may be described equivalently as either µ(k, T ) := λ(k, |T |) or

µ(k, T ) = inf{∥T −R∥∞ : rank(R) ≤ k}.
The standard trace on L∞ (more precisely on the trace-class ideal) is denoted Tr.
Fix an orthonormal basis {ek}∞k=0 on H (the particular choice of basis is inessen-

tial). We identify the algebra ℓ∞ of all bounded sequences with the subalgebra of
diagonal operators on H with respect to the chosen basis. For a given α ∈ ℓ∞, we
denote the corresponding diagonal operator by diag(α).

For A,B ∈ L∞, we say that B is submajorized by A in the sense of Hardy-
Littlewood, written as B ≺≺ A, if

n∑
k=0

µ(k,B) ≤
n∑
k=0

µ(k,A), n ≥ 0.

We say that B is logarithmically submajorized by A, written as B ≺≺log A if
n∏
k=0

µ(k,B) ≤
n∏
k=0

µ(k,A), n ≥ 0.

An important result concerning logarithmic submajorisation is the Araki-Lieb-
Thirring inequality [34, Theorem 2], which states that for all positive bounded oper-
ators A and B and all r ≥ 1,

(2.1) |AB|r ≺≺log A
rBr.
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