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SPACE TIME RESONANCES
[after Germain, Masmoudi, Shatah]

by David LANNES

INTRODUCTION

An important research program in nonlinear partial differential equations consists
in proving the existence of global in time smooth solutions to various nonlinear dis-
persive equations on Rd (d integer, d ≥ 1) with small initial data. This program was
initiated about three decades ago and has been the motivation for the development
of powerful concepts.

A general feature is that the linear dispersive terms of the equation tend to force
the solution to spread and to decay. Various dispersive estimates have been derived to
provide precise informations on this decay. The contribution of the nonlinear terms
is very different. As for ordinary differential equations, they may be responsible for
the development of finite time singularities. When dealing with small data, smooth
nonlinearities behave roughly as their Taylor expansion at zero. The smaller the
homogeneity p of the nonlinearity at the origin, the larger the nonlinear effects. A
first class of global existence results can be obtained when dispersive effects dominate
nonlinear effects. Since dispersive effects increase with the dimension d, this is the
general situation in large dimension and/or large p; in this situation, nonlinearities
do not contribute to the large time behavior of the solution (see for instance [39]).

In smaller dimension or for lower order nonlinearities, the situation is more compli-
cated and depends on the precise structure of the nonlinearity, not only on its order.
For the quadratic wave equation in dimension d = 3, Klainerman identified [25] the
so called null condition on the nonlinearities that ensures, with his powerful vector
fields method, global existence for small data. This method is very robust and has
been used for many other equations; a spectacular illustration is for instance [4] for
the global nonlinear stability of the Minkowski space (see also [30] for a simplified
proof using the notion of weak null condition). We also refer for instance to [20] for
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applications to the Schrödinger equation, to [27] for a small review, and to [8] for a
new approach of the vector fields method.

Another powerful technique to obtain global existence of nonlinear dispersive equa-
tions in low dimension or lower order nonlinearities is the normal form method popu-
larized by Shatah who used it for the nonlinear Klein-Gordon equation [34] (see also
[36] for a similar approach by Simon). The idea of this method is inspired by the
theory of Poincaré’s normal forms for dynamical systems; for a quadratic equation for
instance, it consists in making a quadratic change of unknown chosen so that the new
unknown solves a cubic evolution equation, for which global existence is much easier
to establish. In absence of, or with few time resonances, this method is very efficient,
and has also been used in many works. See for instance [33, 37, 31], as well as [9]
where the relevance of null conditions for the normal form method is exploited.

In a series of papers [14, 16, 15, 12, 13], Germain, Masmoudi and Shatah intro-
duced a new method to handle situations where the normal form approach cannot be
used. The same idea has also been used independently by Gustafson, Nakanishi and
Tsai [17, 18] for the Gross-Pitaevskii equation. Working on a Duhamel formulation of
the equations in Fourier variables, they identify the normal form transform as an inte-
gration by parts in time in this formula. Time resonances are the natural obstruction
since they create singularities when this integration by parts is performed. Germain,
Masmoudi and Shatah propose to complement this approach with an integration by
parts in frequency that provides extra time decay, which is helpful to prove global
well posedness. The obstructions to this approach are called by the authors space res-
onances; they differ in general from time resonances, which explains why situations
that were not covered by the normal form approach can be handled this way. As for
the vector fields with the null condition, the structure of the nonlinearities plays an
important role for the space time resonance approach; when the nonlinearities cancel
some of the singularities created by time or frequency integration by parts, one may
expect the normal form method or Germain, Masmoudi and Shatah’s more general
approach to work even in situations where time and/or space resonances are present.
Based on an analogy with optics, we call here these structural conditions time and
space transparency.

We tried in these notes to distinguish the notion of null condition from those of
space and time transparencies; we also relate them to another structural condition
on the nonlinearities called compatibility, and which is linked to the decay rate of
products of solutions of homogeneous linear dispersive equations.

Throughout these notes, we use the following quadratic wave equation as a simple
example to explain Klainerman’s vector field method, the normal form approach, and
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Germain-Masmoudi-Shatah’s new method,

(1) ∂2
t u−∆u = Q(∂u, ∂u), u|t=0

= εu(0), ∂tu|t=0
= εu(1),

where Q(·, ·) is a symmetric bilinear form and ∂u = (∂tu, ∂1u, . . . , ∂du)T . When the
simplicity of this example hides important phenomena, we also use a system of two
coupled such equations. We also comment on the case of general first order sym-
metric systems because this framework is quite adapted for a comparison of the null
condition, the space and time transparencies, and the compatibility condition.

Section 1 is devoted to a general exposure of Klainerman’s vector field method,
while Section 2 is centered on the normal form approach. These techniques are very
classical and our goal is not to review recent results related to them; we just present
their basic mechanisms to help understanding the rationale and the interest of the
new method of Germain, Masmoudi and Shatah, which is described in Section 3.
We also include in this section a description of the authors’ global existence result
for the water waves equations [16], which is probably the most important example
of application of this new method. Finally we point out in Section 4 that the null,
transparency and compatibilities conditions play also a role in other contexts than
the issue of global existence for small data.

1. KLAINERMAN’S VECTOR FIELDS METHOD

As explained in the introduction, global existence for small initial data is the general
scenario for nonlinear dispersive equations when the dimension is large and/or the
nonlinearity is of high order at the origin. For the quadratic wave equation (1), global
existence is always true when d ≥ 4. We sketch the proof of this classical result in § 1.1.

1.1. Global existence for the quadratic wave equation (1) in dimension
d ≥ 4

We prove in this section the following theorem using the vector fields method
introduced by Klainerman [25].

Theorem 1.1 ([25]). — The Cauchy problem (1) with smooth compactly supported
initial conditions has a smooth solution for all t ≥ 0 if d ≥ 4 and ε is small enough.

For the linear homogeneous wave equation,

(2) ∂2
t u−∆u = 0, u|t=0

= εu(0), ∂tu|t=0
= εu(1),

the energy

E(u) =
1

2
|∂tu|22 +

1

2
|∇u|22

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2013



358 D. LANNES

is conserved. More generally, one gets the following classical energy inequality after
multiplying �u by ∂tu and integrating in space,

(3) E(u)1/2(t) ≤ E(u)1/2(0) +

∫ t

0

|�u(τ, ·)|2dτ.

If Z is a vector field that commutes with the operator � = ∂2
t − ∆, and if u solves

(2), one also has

(4) (∂2
t −∆)Zu = 0,

and E(Zu) is also conserved. More generally, if Z1, . . . , Zn is a family of vector fields
that commute with the wave operator �, the quantity E(Z1 · · ·Znu) is conserved;
this yields important information on the regularity and/or decay properties of the
solution. For the wave equation, the vector fields that commute with � are

(5) ∂α, Zjk = xk∂j − xj∂k, Zj = xj∂t + t∂j ,

where 0 ≤ α ≤ d, 1 ≤ j, k ≤ d, (t, x) = (x0, x1, . . . , xd) and ∂α = ∂xα . These
vector fields correspond to invariances of the equation, respectively translation and
Lorentzian invariances. Another important vector field is given by

(6) Z0 = t∂t +
d∑
j=1

xj∂j ,

corresponding to scaling invariance; note that Z0 does not commute with � = ∂2
t −∆

but that [�, Z0] = 2�, so that the property (4) holds. We call commuting vector fields
the vector fields (5) and (6).

One can then build Sobolev-type norms based on these vector fields and generalize
the standard embedding Hs(Rd) ⊂ L∞(Rd) (s > d/2); more precisely, for all smooth
and decaying function v of (t, x), the following Klainerman-Sobolev inequality (due
to Klainerman [25], see also [21, 38] for a proof) holds,

(7)
(
1 + t+ |x|

)d−1(
1 + |t− |x||

)
|v(t, x)|2 ≤ C

∑
|I|≤d/2+1

|ZIv|22,

where ZI denotes any product of |I| of the above commuting vector fields.
Defining, for all s ≥ 0, the higher order energy

Es(v) =
∑
|I|≤s

E(ZIv),

and remarking that for all 0 ≤ α ≤ d,

(8) ZI∂α = linear combination of vector fields ∂βZJ , with |J | ≤ |I|,

the inequality (7) implies that for all product ZK of |K| commuting vector fields,

(9)
(
1 + t+ |x|

)d−1(
1 + |t− |x||

)
|ZK∂v(t, x)|2 ≤ C Ed/2+1+|K|(v).
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