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1. Partially hyperbolic diffeomorphisms

A diffeomorphism f : M → M on a compact manifold M is partially hyperbolic if
there exists a continuous, nontrivial Df -invariant splitting

TxM = Esx ⊕ Ecx ⊕ Eux , x ∈M

of the tangent bundle such that the derivative is a contraction along Es and an ex-
pansion along Eu, with uniform rates, and the behavior of Df along the center bundle
Ec is in between its behaviors along Es and Eu, again by a uniform factor. Partial hy-
perbolicity is a natural generalization of the notion of uniform hyperbolicity (Anosov
or even Axiom A, see [25]), that includes many interesting additional examples, most
notably: diffeomorphisms derived from Anosov through deformation by isotopy, many
affine maps on homogeneous spaces, certain skew-products over hyperbolic maps, and
time-1 maps of Anosov flows. Partial hyperbolicity is an open condition, so any C1

small perturbation of these examples is partially hyperbolic as well.
The stable and unstable bundles, Es and Eu, are uniquely integrable; that is, there

exist unique f -invariant foliations W s and W u tangent to Es and Eu, respectively,
at all points. The leaves of these foliations are Ck if the diffeomorphism is Ck, for any
1 ≤ k ≤ ∞, but the foliations are usually not transversely smooth. On the other hand,
if f is twice differentiable then each W s and W u is absolutely continuous, meaning
that its holonomy maps preserve the class of zero Lebesgue measure sets. These facts
go back to the pioneering work of Brin, Pesin [6] and Hirsch, Pugh, Shub [15] where
partial hyperbolicity and the closely related notion of normally hyperbolic foliations
were introduced.

In general, the center bundle Ec need not be integrable, and similarly for the center
stable bundle Ecs = Ec ⊕ Es and the center unstable bundle Ecu = Ec ⊕ Eu. We
call the diffeomorphism dynamically coherent if Ecs and Ecu are tangent to foliations
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W cs and W cu respectively. Then intersecting the leaves of W cs and W cu, one obtains
an integral foliation W c for the center bundle as well. As it turns out, dynamical
coherence does hold in many situations of interest.

Brin, Pesin [6] also introduced the notion of accessibility, which has played a central
role in recent developments. A partially hyperbolic diffeomorphism is called accessible
if any two points in the ambient manifold may be joined by an su-path, that is,
a piecewise smooth path such that every smooth subpath is contained in a single
leaf of W s or a single leaf of W u. More generally, the diffeomorphism is essentially
accessible if, given any two sets with positive volume, one can join some point of one
to some point of the other by an su-path.

Interest in partially hyperbolic systems was greatly renewed in the mid-nineties,
with two initial goals in mind. One goal was to characterize robust (or stable) tran-
sitivity, both in discrete time and continuous time. A dynamical system is transitive
if it possesses orbits that are dense in the whole ambient space. The best known
examples are all of the known constructions of Anosov diffeomorphisms (see [25]).
Actually, since Anosov maps form an open subset of all C1 diffeomorphisms, these
are also examples of robust transitivity. On the other hand, early constructions by
Shub [24] and Mañé [17] showed that diffeomorphisms can be robustly transitive
without being Anosov. Many other examples were found by Bonatti, Díaz [2] and
Bonatti, Viana [5]. A subsequent series of works started by Díaz, Pujals, Ures [10]
for diffeomorphisms, and Morales, Pacifico, Pujals [18] for flows, established that in
dimension three robustness implies partial hyperbolicity (where at least two of the
bundles in the partially hyperbolic splitting are non-trivial). In higher dimensions one
has to replace partial hyperbolicity by a related weaker condition called existence of
a dominated splitting. See [3, 5] and also [4, Chapter 7] and references therein.

Another goal, initiated by Grayson, Pugh, Shub [14], was to recover the original
attempt by Brin, Pesin [6] to prove that most partially hyperbolic, volume preserving
diffeomorphisms are actually ergodic. To this end, Pugh, Shub [20] proposed the
following pair of conjectures:

Conjecture 1. — Accessibility holds for an open and dense subset of C2 partially hy-
perbolic diffeomorphisms, volume preserving or not.

Conjecture 2. — A partially hyperbolic C2 volume preserving diffeomorphism with
the essential accessibility property is ergodic.

Concerning Conjecture 1, it was shown by Dolgopyat, Wilkinson [12] that acces-
sibility holds for a C1-open and dense subset of all partially hyperbolic diffeomor-
phisms, volume preserving or not. Moreover, Didier [11] proved that accessibility
is C1-open for systems with 1-dimensional center bundle. More recently, Rodriguez
Hertz, Rodriguez Hertz, Ures [23] verified the complete conjecture for conservative
systems whose center bundle is one-dimensional: accessibility is Cr-dense among Cr

partially hyperbolic diffeomorphisms, for any r ≥ 1. A version of this statement
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for non-conservative diffeomorphisms was obtained in [7]. It remains open whether
Cr-density still holds when dimEc > 1.

Partial versions of Conjecture 2 were obtained by Pugh, Shub [20, 21, 22], as-
suming dynamical coherence and an additional technical condition they called center
bunching. Roughly speaking, their notion of center bunching means that the diffeo-
morphism is close to being an isometry along center leaves. The best result to date on
Conjecture 2 is due to Burns, Wilkinson [8] who proved ergodicity for any accessible,
partially hyperbolic volume preserving diffeomorphism (not necessarily dynamically
coherent) which is not too far from being conformal along center leaves. Although
this property is also called center bunching, it is a lot milder than the one of Pugh,
Shub. In particular, it is automatic when Ec has dimension one. Thus, the previous
result contains as a corollary a complete proof of Conjecture 2 when the center bundle
is one-dimensional. This corollary was also observed in [23].

2. Cocycles

The problems considered in this volume are situated in the following context.
Let f : M →M be a diffeomorphism. We fix a (topological, Lie...) group H with iden-
tity element e and consider the set of all (continuous, Hölder continuous, smooth...)
functions φ : M → H. Such a function is called a cocycle, for reasons that are ex-
plained in the sequel. Cocycles are objects that can be composed along orbits of f ,
and indeed, by the cocycle generated by φ we often mean the sequence φn defined by

φn(x) =


φ(fn−1(x)) · · ·φ(f(x)) · φ(x) if n > 0,
φ−1(f−n(x)) · · ·φ−1(f−2(x)) · φ−1(f−1(x)) if n < 0,
e if n = 0.

An equivalent definition of a cocycle, and one that generalizes to actions of groups
other than Z, is the following. A 1-cocycle is a map α : Z ×M → H satisfying the
cocycle condition:

α(m+ n, x) = α(m, fn(x)) · α(n, x), ∀n,m ∈ Z, x ∈M.(1)

Setting φ(x) = α(1, x), we obtain from the cocycle condition that φn(x) = α(n, x),
thereby establishing the equivalence of the two notions.

There are several contexts in which cocycles arise immediately in smooth dynamics
and related topics, which we now discuss.

Abelian cocycles. — The cocycle φ is called abelian when the group H is abelian.
A fundamental example of an abelian cocycle is the Jacobian map Jac f : M → R∗
that measures the volume distortion of a diffeomorphism f : M →M on a Riemannian
manifold M :

Jac f(x) =
d(vol ◦f)

d vol
(x).
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The 1-cocycle generated by Jac f is α(n, x) = Jac fn(x); in this case the cocycle con-
dition amounts to the composition law for Radon-Nikodym derivatives. Usually this
cocycle is transformed to an additive cocycle by taking a logarithm: log Jac f : M → R.

Abelian cocycles appear more generally as potentials in thermodynamic formalism.
In this setup, one associates to each cocycle φ : M → R over a dynamical system
f : M →M one or more f -invariant probability measures µφ satisfying the variational
equation ∫

M

φdµφ + h(µφ) = sup
ν

Å∫
M

φd ν + h(ν)

ã
,

where the supremum on the right is taken over all f -invariant probability measures
ν, and h(ν) denotes the f -entropy of the measure ν. The functional

P (φ) = sup
ν

Å∫
M

φd ν + h(ν)

ã
,

called the pressure of φ, has the property that if

(2) φ− ψ = Φ ◦ f − Φ,

for some function Φ, then P (φ) = P (ψ). Hence the measure µφ depends only on the
equivalence equivalence class for the equivalence relation φ ∼ ψ if and only if (2)
holds. As we describe below, this equation can be viewed as a coboundary equation
in the appropriate cohomology theory.

Another place in which abelian cocycles appear, this time in the context of R-ac-
tions, is in time changes in flows. Suppose that ϕt is a flow. If γ : M → R, then the
function α : R×M → R defined by

α(t, x) =

∫ t

0

γ(ϕs(x)) ds

satisfies the cocycle condition:

α(s+ t, x) = α(s, ϕt(x)) + α(t, x),(3)

which is the natural analogue of (1) for R-actions. In general, if α : R×M → R is an
arbitrary function, then the map ψα : R×M →M given by

ψα(t, x) = ϕα(t,x)(x)

will define a flow on M if and only if α satisfies (3). Here too, one has a coboundary
equation which corresponds to (2) for flows:

(4) α(t, x)− β(t, x) =

∫ t

0

γ(ϕs(x)) ds.

One can check that if Equation (2) is satisfied for cocycles α and β and some real-
valued function γ, then the flows ϕα and ϕβ are time changes of one another.
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Linear cocycles. — By a linear cocycle we will mean a cocycle with values in a
matrix group. Such non-abelian cocycles also arise naturally, most notably as deriva-
tive cocycles. Suppose that f : M → M is a diffeomorphism of an n-manifold M . To
avoid technical issues, assume that the tangent bundle TM is trivial:

TM = M × Rd.

Then the derivative Df can be represented as a map Df : M → GL(d,R) which, by
the Chain Rule, satisfies the (non-abelian) cocycle condition:

Dxf
n+m = Dfm(x)f

n · Dxf
m.

(We remark that the case where TM is non-trivial can be handled with a slight
generalization of the notion of cocycle, using sections of an appropriate bundle.) The
group GL(d,R) can be replaced by other matrix groups, such as SL(d,R), Sp(d,R),
O(d), U(d), etc. Such group-valued cocycles arise naturally as diffeomorphism cocycles
that are volume preserving, symplectic, isometric, and so on, as well as in the study
of frame flows on Riemannian manifolds.

Somewhat further afield, linear cocycles play a key role in analyzing the spectrum
of the one-dimensional discrete Schrödinger operators. To any abelian cocycle φ over
an ergodic system f : M → M and any p ∈ M one can associate a one-dimensional
discrete Schrödinger operator H : `2(Z)→ `2(Z) defined by

H(x)n = xn + xn−1 − φ(fn(p))xn.

The properties of the SL(2,R)-valued cocycles defined by

AE(p) =

(
E − φ −1

1 0

)
for different choices of the parameter E ∈ R determine the spectral properties of the
operator H. For example, if this cocycle is uniformly hyperbolic for some value of E,
then E lies in the resolvent set of H.

3. The central problems

We briefly outline the main questions that are addressed in the two papers in this
volume.

Cohomological equation. — The cohomological (or coboundary) equation is

φ = Φ−1 · (Φ ◦ f).(5)

For abelian cocycles this is usually written:

φ = Φ ◦ f − Φ.(6)

If such a solution exists, then φ is called a coboundary. Coboundaries are in a natural
sense orthogonal to f -invariant functions: they are the image of the linear operator
φ 7→ φ ◦ f − φ, whereas the f -invariant functions are the kernel. This orthogonality
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statement can be made precise. For example, if f preserves a probability measure µ,
then in L2(µ) the closed subspace

Z = {φ ∈ L2(µ) |φ ◦ f = f}

is the orthogonal complement of the L2-closure of the space of coboundaries:

B = {φ ◦ f − φ |φ ∈ L2(µ)}

This observation, which holds in some form in other function spaces as well, gives a
method for proving ergodic theorems: establish the result for functions in Z and in B
and then extend from the dense set Z ⊕ B using linear algebra, maximal inequalities,
and so on.

An obvious obstruction to finding a continuous solution to (6) is obtained by inte-
grating both sides against an f -invariant probability measure µ:∫

M

φdµ =

∫
M

(Φ ◦ f − Φ) dµ = 0.

The natural question then arises whether this is the only obstruction; that is, if φ has
average 0 with respect to every f -invariant probability measure µ, then does there
exist a continuous solution to (6)? For transitive hyperbolic systems, the answer is
“yes,” as we explain below. For rigid rotations and other uniquely ergodic systems,
the answer usually depends on finer arithmetic data.

For example, suppose that f is rotation on the circle by α ∈ R/Z. A simple Fourier
analysis of (6) shows that if α is Diophantine, then for any C∞ function φ of average
zero there exists a C∞ solution to (6). On the other hand, if α is Liouvillean, then
there exists a C∞ function φ of average zero for which there is no measurable solution.
For perturbations of rigid rotations, solving (6) is a key component of KAM theory,
and the issue of small divisors presents obstructions to both solving the equation and
establishing regularity of its solutions.

This a basic example of cohomological theory as applied to the so-called “elliptic
systems.” Related to these are the parabolic systems, which include flows on surfaces,
polygonal billiard flows, interval exchange transformations, horocyclic flows and flows
on nilmanifolds. In these systems, which are typically uniquely ergodic or possess
finitely many invariant measures, solving the cohomological equation gives informa-
tion about rates of convergence for ergodic averages. The relative paucity of invariant
measures leads one to look at a broader class of functionals – the f -invariant distri-
butions – as obstructions to solving the cohomological equation.

In contrast with the elliptic and parabolic systems, hyperbolic systems have a
plethora of invariant measures, for example the Dirac measures supported on periodic
orbits. The basic existence theory of Livšic shows that the invariant measures present
a complete set of obstructions to finding a continuous solution to (6). What is more,
for transitive hyperbolic systems (for which periodic orbits are dense), the periodic
measures alone constitute a complete set of obstructions. Another feature of Anosov
systems is that continuous solutions are always smooth.
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Livšic theory for hyperbolic systems has several interesting applications. For exam-
ple, applying this theory to the log Jac cocycle, it follows immediately that a transitive
Anosov diffeomorphism f preserves a smooth invariant measure if and only if for every
periodic point p of period n:

Jac fn(p) = 1.

Livšic theory for Anosov flows is also an ingredient in the proof of marked length
spectrum rigidity for negatively curved surfaces, see [19, 9].

In the second paper in this volume, this Livšic theory is extended to accessible
partially hyperbolic diffeomorphisms.

The role of Lyapunov exponents. — If A is a linear cocycle over f : M → M

with values in GL(k), then there is a well-defined notion of the extremal Lyapunov
exponents of A at p ∈M :

λ+(A, p) := lim sup
n→∞

1

n
log ‖An(p)‖ and λ−(A, p) := − lim sup

n→∞

1

n
log ‖An(p)−1‖

Kingman’s ergodic theorem implies that if f preserves a finite measure µ, then for µ-al-
most every p, the limits exist and depend measurably on p; moreover, each limit is
constant if µ is ergodic. More generally, Oseledec’s theorem implies that µ-almost
every p ∈M , the limit

λ(A, p, v) := lim
n→∞

1

n
log ‖An(p)v‖

exists for every v ∈ Rk and assumes finitely many values, called the Lyapunov expo-
nents at p. The extremal Lyapunov exponents λ+(A, p) and λ−(A, p) coincide with
the largest and smallest values of λ(A, p, v) over all v ∈ Rk.

The Lyapunov exponents carry important information about a linear cocycle. In the
case of the derivative cocycleDf , non-vanishing of the Lyapunov exponents on a set of
positive volume implies that f has various chaotic properties. For the Schrödinger co-
cycle, almost everywhere vanishing of the Lyapunov exponent (equivalently, vanishing
of the extremal exponents) for a positive measure set of energies E ∈ R is equivalent
to the existence of absolutely continuous spectrum for the associated operator. In
the first paper in this volume, a criterion is developed to establish the non-vanishing
of the extremal Lyapunov exponents for a linear cocycle over an accessible, volume
preserving, partially hyperbolic diffeomorphism. Actually, as explained below, most
of the theory extends to smooth (non-linear) cocycles.

4. The general theory

To place the preceding discussion into a larger context, we briefly describe the
cohomology theory in which these cocycles fit. The abelian cohomological equations
that arise in dynamical systems belong to a general cohomology theory developed to
study groups. To be precise, the abelian cocycles considered above are 1-cocycles in
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the first cohomology group of Z with coefficients in a Z-module of Hölder continuous
functions on M . Let us explain what we mean by this.

Let G be a group. A G-module is an abelian group A together with an action of G
by endomorphisms of A. In the simplest cases, A is an arbitrary abelian group and
G acts trivially on A. The main example considered in dynamics arises as follows.
We fix a group G acting by homeomorphisms on a space X (for example, the Z-ac-
tion generated by a single homeomorphism f : X → X). We set A to be the space
C(X,R) of continuous, R-valued functions on X, where the abelian group structure
on A is given by pointwise addition. Then there is a natural G-action on A given by
precomposition: (g · φ)(x) = φ(g(x)), which makes A into a G-module. Clearly the
target space R in this construction can be replaced by any abelian topological group.
If we assume higher regularity, such as smoothness, for the G-action, then C(X,R)

can be replaced by other function spaces, such as the space of Hölder functions, or
smooth functions. More generally, if V is a vector bundle over X to which the action
of G extends, then we can take A to be the space of (continuous, smooth...) sections
of V , such as the space of smooth vector fields on X, when X is a smooth manifold.

Now given aG-module A, we construct the cohomology groupsHn(G,A) as follows.
For n ≥ 0, let Cn(G,A) be the set of all functions from Gn to A, which forms an
abelian group. The elements of Cn(G,A) are called (inhomogeneous) n-cochains. The
coboundary homomorphisms dn : Cn(G,A)→ Cn+1(G,A) are defined by

(dnψ)(g1, . . . , gn+1) = g1 · ψ(g2, . . . , gn+1)

+
n∑
i=1

(−1)iψ(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1) + (−1)n+1ψ(g1, . . . , gn).

One can check that dn+1◦dn = 0; thus, we have a cochain complex and we can compute
cohomology in the standard way. The group of n-cocycles is defined by Zn(G,A) =

ker(dn), and the group of n-coboundaries is defined by B0(G,A) = 0, and

Bn(G,A) = dn−1(Cn−1(G,A)), n ≥ 1.

Finally, we set Hn(G,A) = Zn(G,A)/Bn(G,A).
Going back to the dynamical setting, suppose that f : X → X is a homeomorphism,

which generates an action of the integers Z. Then the 0-cochains are just elements of
the module C(X,R), and any φ : X → R generates a 1-cochain α : Z → C(X,R) via
the formula:

α(n) = φ ◦ fn.
It is easily checked that every such cochain is a 1-cocycle and, conversely, every 1-cocy-
cle is generated by such a function φ. Indeed, the cocycle condition (1) in this setting
reduces to d1α = 0. Moreover the abelian cohomological Equation (6) translates in
this setting to:

α = d0Φ.

This equation asks if the given cocycle α is trivial on cohomology. Higher order coho-
mology groups have been studied in the dynamical context, most notably for groups
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of diffeomorphisms of the circle. In this context, certain elements of H2 generalize the
notion of rotation number to non-amenable groups. See [13].

The non-abelian cocycles also fit into a similarly defined non-abelian cohomology
theory. In this case, however, the cohomology spaces no longer carry a group structure.

5. Fibered systems

The unifying concept in this volume is that of cocycles over partially hyperbolic
diffeomorphisms. Let us outline our basic approach to such systems. Linear cocycles
can be studied through their induced action on the projective bundle associated to the
underlying vector bundle. Similarly, the classical cohomological equation is associated
to an action by translations on a trivial R-bundle over the original space.

Both these constructions are special cases of a general notion of fibered dynamical
system, acting on some bundle over the original space, possibly with low fiberwise
regularity. Under suitable assumptions, the invariant (stable and unstable) foliations
of the base partially hyperbolic diffeomorphism lift to invariant foliations of the fibered
system. Solutions of the relevant cohomological equations correspond to sections of
the fiber bundle that are saturated by the lifted foliations, a property that we call
holonomy invariance. The rich structure of these foliations allow us to obtain strong
properties for these sections, when they exist.

One main conclusion of the first paper in this volume applies when the diffeo-
morphism satisfies the assumptions of [8]: partial hyperbolicity, volume preserving
and center bunching. According to Theorems D and E in this paper, in that case
any measurable section which is essentially (i.e., almost everywhere) saturated under
the lifted stable foliation and essentially saturated under the lifted unstable foliation
coincides, almost everywhere, with some section that is saturated by both lifted fo-
liations. Moreover, if the base diffeomorphism is accessible then such a bi-saturated
section may be chosen to be continuous.

The goal in this first paper is to detect non-zero Lyapunov exponents for fibered
systems that act smoothly on the fibers (smooth cocycles), including projective actions
of linear cocycles as a special case. For this, it is convenient to consider yet another
fibered system, namely the push-forward action on the space of probability measures
on each fiber.

General methods going back to Ledrappier [16] in the linear case and extended
by Avila, Viana [1] to the present setup, give that if the Lyapunov exponents vanish
almost everywhere then there exist measurable sections that are essentially saturated
by either one of the lifted foliations. In view of the previous observations, it follows
(Theorems B and C in this paper) that if the Lyapunov exponents vanish almost
everywhere then measurable bi-saturated sections do exist, and they may be chosen
to be continuous if the base dynamics is accessible.

As it turns out, bi-saturated sections are very difficult to come by, at least in
the accessible case. Indeed, given any point p in the base space, consider the group
of su-loops, that is, su-paths from p to itself. Each su-loop is associated to a holonomy
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map on the fiber over p, and a bi-invariant section gives rise to a fixed point common
to all those maps. When the base diffeomorphism is accessible, the loop group is very
big, yielding a large set of obstructions to the existence of such a fixed point.

In this way one gets, in particular, that generic linear cocycles over an accessi-
ble, volume preserving, partially hyperbolic diffeomorphism have some non-vanishing
extremal exponent (Theorem A of this paper).

These tools developed in the first paper to handle extremal Lyapunov exponents
can be applied as well to abelian cocycles. This is the starting point for the second
paper in this volume. Reinterpreting in the abelian context the results of the first
paper, we obtain a reformulation in the partially hyperbolic context of two of the
main conclusions of the Livšic theory: existence and measurable rigidity of solutions to
the coboundary equation (Theorem A parts I and III of [26]). The second paper then
completes the remaining task of establishing regularity of solutions to the coboundary
equation (Theorem A parts II and IV of [26]). This gives a fairly complete extension
of the main conclusions of the Livšic theory from the hyperbolic to the (accessible)
partially hyperbolic context.

The task is simplified conceptually by the fibered system perspective. A solution
to the coboundary equation is a bi-saturated section of the associated R-bundle; the
image of this section is invariant under the lifted stable and unstable holonomy maps.
Accessibility implies that these local holonomy maps act transitively on the section,
meaning that the section is homogeneous under a large groupoid of transformations.
A condition on the diffeomorphism called strong bunching implies that the holonomy
maps, while not smooth, are smooth along center directions in the base manifold.
Under the strong bunching hypothesis, one can then invoke ideas from the study of
transformation groups to show that the section is smooth along center directions.
Smoothness of the leaves of the lifted foliation gives smoothness of the section along
stable and unstable directions; combined with smoothness along center directions, this
gives smoothness of the invariant section. As with the conclusions in this paper, the
regularity results in [26] apply much more generally to saturated sections of smooth
cocycles (Theorem C in [26]).
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