Astérisque

MARK CHAIMOVICH New algorithm for dense subset-sum problem

Astérisque, tome 258 (1999), p. 363-373

http://www.numdam.org/item?id=AST_1999_258_363_0

© Société mathématique de France, 1999, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

NEW ALGORITHM FOR DENSE SUBSET-SUM PROBLEM

by

Mark Chaimovich

Abstract. — A new algorithm for the dense subset-sum problem is derived by using the structural characterization of the set of subset-sums obtained by analytical methods of additive number theory. The algorithm works for a large number of summands (m) with values that are bounded from above. The boundary (ℓ) moderately depends on m. The new algorithm has $O(m^{7/4}/\log^{3/4} m)$ time boundary that is faster than the previously known algorithms the best of which yields $O(m^2/\log^2 m)$.

1. Introduction

Consider the following subset-sum problem (see [13]). Let $A = \{a_1, \ldots, a_m\}$, $a_i \in \mathbb{N}$. For $B \subseteq A$, let $S_B = \sum_{a_i \in B} a_i$ and let $A^* = \{S_B \mid B \subseteq A\}$. The problem is to find the maximal subset-sum $S^* \in A^*$ satisfying $S^* \leq M$ for a given target number $M \in \mathbb{N}$.

Although the problem is NP-hard (the partition problem is easily reduced to the SSP), its restriction can be solved in polynomial time. Denote $\ell = \max\{a_i \mid a_i \in A\}$. Introducing restriction $\ell \leq m^{\alpha}$ where α is some positive real number (or equivalently $m \geq \ell^{1/\alpha}$), one can easily solve problems from this restricted class in $O(m^2\ell)$ time using dynamic programming.

This work belongs to the school of thought that applies analytical methods of number theory to integer programming (see [8], [2]). It continues the application of a new approach, the main idea of which is as follows: analytical methods enable us to effectively characterize the set A^* of subset-sums as a collection of arithmetic progressions with a common difference (see [7], [12], [1], [10]). Once this characterization is obtained, it is quite easy to find the largest element of A^* that is not greater than the given M.

Efficient algorithms have recently been derived using the new approach. In almost linear time (with respect to the number m of summands) they solve the following class

¹⁹⁹¹ Mathematics Subject Classification. — Primary: 90C10 Alternate: 05A17, 11B25, 68Q25.

Key words and phrases. — Analytical Number Theory, Integer Programming, Subset Sum Problem.

of SSP: the target number M is within a wide range of the mid-point of the interval $[0, S_A]$ and $m > c\ell^{2/3} \log^{1/3} \ell$, $\ell > \ell_0$ when A is a set of distinct summands ([9], [4], [6], [11]) or $m > 6\ell \log \ell$ when A is an arbitrary multi-set without any limitation on the number of distinct summands ([5]). Here and further on $\ell_0, c, c_1, c_2, \ldots$ denote some absolute positive constants.

The latest analytical result ([10]) allows one to apply the algorithm from [9] to problems with density $m > c_1(\ell \log \ell)^{1/2}$. The algorithm from [11] works for density $m > c_2 \ell^{1/2} \log \ell$ which is almost the same as in [10]. For $m < \ell^{2/3}$, the time boundary for both algorithms is estimated as $O((\frac{\ell}{m})^2)$, i.e., $O(\frac{m^2}{\log^2 m})$ for the lowest density $(m \sim (\ell \log \ell)^{1/2}).$

This work refines the structural characterization of the set of subset-sums which allows us to use more efficient conditions in the process of determining the structure. These refinements are discussed in Section 2. They lead to the development of a new algorithm which is described in Section 3. It works in $O(m \log m +$ $\min\{\frac{\ell^{5/4}\log^{1/2}\ell}{m^{3/4}}, (\frac{\ell}{m})^2\}) \text{ time which improves [9] and [11] for } m \leq \frac{\ell^{3/5}}{\log^{2/5}\ell} \text{ and yields}$ $O(m^{7/4}/\log^{3/4} m)$ time for $m \sim (\ell \log \ell)^{1/2}$.

2. Refinement of the structural characterization of the set A^* of subset-sums

The following Theorem 2.1 [10] determines the structure of the set A^* of subsetsums for $m > c_1 (\ell \log \ell)^{1/2}$ as a long segment of an arithmetic progression.

Theorem 2.1 (G. Freiman). — Let $A = \{a_1, \ldots, a_m\}$ be a set of m integers taken from the segment [1, ℓ]. Assume that $m > c_1(\ell \log \ell)^{1/2}$ and $\ell > \ell_0$. (i) There is an integer $d, 1 \le d \le \frac{3\ell}{m}$, such that

$$(1) \qquad \qquad |A(0,d)| > m - d$$

and

$$\{M: M \equiv 0 \pmod{d}, |M - \frac{1}{2}S_{A(0,d)}| \le c_2 dm^2\} \subseteq A^*(0,d)\}$$

where $A(s,t) = \{a : a \equiv s \pmod{t}, a \in A\}$. (ii) If for all prime numbers $p, 2 \leq p \leq \frac{3\ell}{m}$,

$$(2) |A(0,p)| \le m - \frac{3\ell}{m},$$

then the assertion (i) of the Theorem holds true with d = 1.

Simple consideration shows that verification of condition (2) is crucial for the structural characterization of a set A^* of subset-sums. Algorithms from [9] and [11] use this condition directly ([9]) or indirectly ([11]). Our intention is to replace condition (2) by a condition (or a set of conditions), verification of which is easier in the sense that the number of required operations is smaller. To do this we introduce the notion of d-full set. We say that set A is d-full if A^* contains all classes of residues modulo d, i.e., in other words, $A^* \pmod{d} = \{0, 1, \dots, d-1\}.$

Let us study some properties of *d*-full sets.

Define
$$S_{r \pmod{d}} = \min\{s \in A^*, s \equiv r \pmod{d}\}$$
.

Lemma 2.2. — Let A be a set of integers taken from the segment $[1, \ell]$. Suppose that A is d-full. Then for each r, 0 < r < d,

$$(3) S_{r(\text{mod } d)} \leq d\ell.$$

Proof. — Assume that for some r condition (3) is not true, i.e., $S_{r(\text{mod }d)} > d\ell$. This means that $S_{r(\text{mod }d)} = a_{i_1} + a_{i_2} + \cdots + a_{i_k}$ for some k > d. Consider the sequence of subset-sums $T_s = \sum_{j=1}^s a_{i_j}, 1 \le s \le k$. Obviously, at least two of these sums (assume T_s and T_q , s < q) belong to the same residue class modulo d (since k > d). Then $T_q - T_s \equiv 0 \pmod{d}$ and subset-sum $T_k - (T_q - T_s) = a_{i_1} + \cdots + a_{i_s} + a_{i_{q+1}} + \cdots + a_{i_k} \equiv r \pmod{d}$ and this subset-sum is smaller than $S_{r(\text{mod }d)}$. This fact contradicts the minimality of $S_{r(\text{mod }d)}$.

Lemma 2.3. — Suppose that the set A is d-full. Then there is a d-full subset of A with cardinality less than d.

Proof. — Let us assume that contrary to the Lemma the smallest *d*-full subset of *A* has more than d-1 elements. Denote this subset by $A' = \{a_1, \ldots, a_k\}$. In fact, $d \not| a_i$ for all *i*'s.

Let B be the multi-set of non-zero residues modulo d in A', that is B is composed with |A'(i,d)| times i for any $1 \le i < d$. Naturally one has $B^* = (A')^* \pmod{d}$. Then, as a multi-set, $|B| = \sum_{i=1}^{d-1} |A'(i,d)| \ge d$, by the assumption.

Define a sequence of multi-sets B_0, B_1, \ldots, B_k as follows: B_0 is an empty set and $B_i = \{b_1, \ldots, b_i\}$ for i > 0. Note that $0 \in B_i^*$ (since it is the sum of an empty subset), and that

(4)
$$B_i^* = B_{i-1}^* + \{0, b_i\} = B_{i-1}^* \cup (B_{i-1}^* + b_i), 1 \le i \le k.$$

Thus, obviously, $|B_{i-1}^*| \leq |B_i^*|$.

Taking into account that $|B_0^*| = 1$ and that $|B| = k \ge d$, for some *i* we have $|B_{i-1}^*| = |B_i^*|$ implying that residue b_i (and element a_i respectively) does not add new residue classes, i.e., $(B \setminus b_i)^* = B^*$. Therefore, $A' \setminus a_i$ is *d*-full as well as A'. This fact contradicts the assumption that A' is the smallest *d*-full subset of A and proves the Lemma.

The next lemma refines the second assertion (ii) of Theorem 2.1.

Lemma 2.4. — Let A be a set of integers taken from the segment $[1, \ell]$. Assume that $|A| = m > c_1(\ell \log \ell)^{1/2}, \ \ell > \ell_0$, and suppose that A is q-full for each $q, \ 2 \le q \le \frac{3\ell}{m}$. Then the assertion (i) of Theorem 2.1 holds with d = 1.

Proof. — Assume that d > 1 in Theorem 2.1. By the theorem, a long segment of an arithmetic progression belongs to $A^*(0, d)$. On the other hand, A is d-full (since $d \leq \frac{3\ell}{m}$) and subset-sum $S_{r(\text{mod }d)}$ exists for each $r, 1 \leq r < d$. Combine a long segment of an arithmetic progression (with difference d) in interval

$$\left[\frac{1}{2}S_{A(0,d)} - c_2 dm^2, \frac{1}{2}S_{A(0,d)} + c_2 dm^2\right]$$

(belonging to $A^*(0,d)$) with subset-sums $S_{1(\text{mod }d)}, S_{2(\text{mod }d)}, \ldots, S_{d-1(\text{mod }d)}$ (these subset-sums are obtained without using elements of A(0,d)). Thus we obtain an interval

$$[rac{1}{2}S_{A(0,d)} - c_2 dm^2 + \max\{S_{r(\mathrm{mod}\,d)}: 1 \le r < d\}, rac{1}{2}S_{A(0,d)} + c_2 dm^2],$$

all integers of which belong to A^* . In fact, if the length of this new interval is sufficiently large $(O(m^2))$, for example), we will obtain the result of Theorem 2.1 with d' = 1. Actually, since we are interested only in the case d > 1 and since $\max\{S_{r \pmod{d}}: 1 \le r < d\} < d\ell = O(dm^2/\log m)$, the length of the obtained interval is

$$O(dm^2 - \max\{S_{r(\text{mod }d)}: 1 \le r < d\}) = O(dm^2 - \frac{dm^2}{\log m}) = O(dm^2)$$
mpletes the proof.

which completes the proof.

The latest property (Lemma 2.4) shows that in order to obtain a structural characterization of A^* , it is sufficient to verify that set A is q-full for all q's, $2 \le q \le \frac{3\ell}{m}$. Clearly, the new condition is weaker than (2): A can be q-full even if $|A(0,q)| > m - \frac{3i}{m}$. However, from an algorithmic point of view this new condition is difficult to verify. To correct this we have to use some lemmas which determine different sufficient conditions implying that set A is q-full. We will also show that it is sufficient to verify the prime numbers only.

Lemma 2.5 ([3]). — If p is prime and

(5)
$$\sum_{i=1}^{p-1} |A(i,p)| \ge p-1$$

then A is p-full.

The proof of this lemma is presented here because of the difficulty in accessing of reference [3].

Proof. — Using the fact that all elements of $A(i,p), i \neq 0$, are relatively prime to p, introduce ring \mathbb{Z}_p of residues mod p. In the following reasoning it is implied that all arithmetic operations, including the operations for computing subset-sums, are operations modulo p in \mathbb{Z}_p .

Put, as in the proof of Lemma 2.3, $B = \{b_1, b_2, \ldots, b_k\}$ for the multi-set of non-zero residues modulo p in A and define the sequence of multi-sets B_0, B_1, \ldots, B_k where

 B_0 is an empty set and $B_i = \{b_1, \dots, b_i\}$ for i > 0. By the hypothesis, $|B| = \sum_{i=1}^{p-1} |A(i,p)| \ge p-1$. If for all $i \le p-1, |B_{i-1}^*| < |B_i^*|$, then $|B_i^*| \ge |B_{i-1}^*| + 1 \ge |B_0^*| + i = i + 1$, i.e., $|B_{p-1}^*| \ge p$, which concludes the proof, since we are dealing with residues modulo p.

Otherwise, the fact that $|B_{i-1}^*| = |B_i^*|$ for some i < p-1 implies that for any $c \in B_{i-1}^*, c+b_i$ also belongs to B_{i-1}^* . Continuing this reasoning we obtain $c+b_i$ $rb_i \in B_{i-1}^* \subseteq B^*$ for any r. Recalling that all operations are modulo p and that $gcd(b_i, p) = 1$, one obtains that all residues modulo p are in B^* , i.e., A is p-full.