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NEW ALGORITHM FOR DENSE SUBSET-SUM PROBLEM 

by 

Mark Chaimovich 

Abstract. — A new algorithm for the dense subset-sum problem is derived by using 
the structural characterization of the set of subset-sums obtained by analytical meth­
ods of additive number theory. The algorithm works for a large number of summands 
(m) with values that are bounded from above. The boundary (€) moderately depends 
on m. The new algorithm has 0(ra7/4/log3/4 m) time boundary that is faster than 
the previously known algorithms the best of which yields 0(m2/ log2 m). 

1. Introduction 

Consider the following subset-sum problem (see [13]). Let A = { a i , . . . , am}, 
a{ € IV. For B ÇA, let SB = J2aieB a* and let A* = iSB I B C A}. The problem is 
to find the maximal subset-sum 5* G A* satisfying S* < M for a given target number 
M e IV. 

Although the problem is NP-hard (the partition problem is easily reduced to the 
SSP), its restriction can be solved in polynomial time. Denote £ — max{a^ | G A}. 
Introducing restriction £ < ma where a is some positive real number (or equivalently 
m > €1/Q;), one can easily solve problems from this restricted class in 0(m2£) time 
using dynamic programming. 

This work belongs to the school of thought that applies analytical methods of 
number theory to integer programming (see [8], [2]). It continues the application of a 
new approach, the main idea of which is as follows: analytical methods enable us to 
effectively characterize the set A* of subset-sums as a collection of arithmetic progres­
sions with a common difference (see [7], [12], [1], [10]). Once this characterization 
is obtained, it is quite easy to find the largest element of A* that is not greater than 
the given M. 

Efficient algorithms have recently been derived using the new approach. In almost 
linear time (with respect to the number m of summands) they solve the following class 
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of SSP: the target number M is within a wide range of the mid-point of the interval 
[0, SA] and m > c£2/3 log1/3 £, £ > £Q when A is a set of distinct summands ([9], [4], 
[6], [11]) or m > 6£log€ when A is an arbitrary multi-set without any limitation on 
the number of distinct summands ([5]). Here and further on £Q, c, c i , C2,... denote 
some absolute positive constants. 

The latest analytical result ([10]) allows one to apply the algorithm from [9] to 
problems with density m > ci(^logf)1/2. The algorithm from [11] works for density 
m > C2I1/2 log I which is almost the same as in [10]. For m < £2/3, the time boundary 

for both algorithms is estimated as 0 ( ( e 
m 

\2> , i.e., O TT>2 
log2 m 

) for the lowest density 

(m ~ (£log£) 1/2 ). 
This work refines the structural characterization of the set of subset-sums which 

allows us to use more efficient conditions in the process of determining the struc­
ture. These refinements are discussed in Section 2. They lead to the develop­
ment of a new algorithm which is described in Section 3. It works in Oimlo&m + 

min{ l5/4 log 1/2 j 
m3/4 

, ( £ 
m 

)2}) time which improves [9] and [11] for m < £3/5 
log2/5 £ 

and yields 

0{m 7/4 / log 3/4 m) time for m ~ (£\og£) 1/2 
. 

2. Refinement of the structural characterization of the set A* of 
subset-sums 

The following Theorem 2.1 [10] determines the structure of the set A* of subset-
sums for rn > ci(€log£)1/2 as a long segment of an arithmetic progression. 

Theorem 2.1 (G. Freiman). — Let A = { a i , . . . , arn} be a set of m integers taken from 
the segment Assume that m > Ci(€log€)1//2 and £ > £Q. 
(i) There is an integer d, 1 < d < such that 

(1) \A(0,d)\ >m-d 

and 
{M : Af = 0(modd), \M - |5A(0,d)| < c2dm2} C A*(0,d) , 

where A(s,t) = {a : a = s(modt) ,a G A}, 
(ii) If for all prime numbers p, 2 < p < ~, 

(2) l^(0 ,p)| < rn -
3l 

m 

then the assertion (i) of the Theorem holds true with d = 1. 

Simple consideration shows that verification of condition (2) is crucial for the struc­
tural characterization of a set ^4* of subset-sums. Algorithms from [9] and [11] use 
this condition directly ([9]) or indirectly ([11]). Our intention is to replace condition 
(2) by a condition (or a set of conditions), verification of which is easier in the sense 
that the number of required operations is smaller. To do this we introduce the notion 
of d-full set. We say that set A is d-full if A* contains all classes of residues modulo 
d1 i.e., in other words, A*(modd) = { 0 , 1 , . . . ,d— 1 } . 

Let us study some properties of d-full sets. 
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Define S r(mod d) = min{5 € A*,s = r(mod d ) } . 

Lemma 2.2. — Let A be a set of integers taken from the segment [!,£]. Suppose that 
A is d-full. Then for each r, 0 < r < d, 

(3) s r(mod d) < dt 

Proof — Assume that for some r condition (3) is not true, i.e., Sy(modd) > dt. This 
means that Sr(mod d) — «n + ai2 H h aik for some k > d. Consider the sequence of 
subset-sums Ts = % ) 1 < 5 < k. Obviously, at least two of these sums (assume 
Ts and Tq, s < q) belong to the same residue class modulo d (since k > d). Then 
Tq-Ts = O(modd) and subset-sum Tk - (Tq-Ts) = H \-ais +aiq+1 H \-aik = 
r(modd) and this subset-sum is smaller than 5r(modd)- This fact contradicts the 
minimality of 5r(mod d). • 

Lemma 2.3. — Suppose that the set A is d-full. Then there is a d-full subset of A 
with cardinality less than d. 

Proof. — Let us assume that contrary to the Lemma the smallest d-full subset of A 
has more than d—1 elements. Denote this subset by A' = { o i , . . . , a ^ } . In fact, d fai 
for all Vs. 

Let B be the multi-set of non-zero residues modulo d in A!, that is B is composed 
with \A'{i, d)\ times i for any 1 < i < d. Naturally one has B* = (A')*(modd). Then, 

as a multi-set, \B\ = d-l 
i=l 

\At(ijd)\ > dj by the assumption. 

Define a sequence of multi-sets BQ, 2?I, . . . , Bk as follows: Bo is an empty set and 
Bi = { & i , . . . , bi} for i > 0. Note that 0 G B* (since it is the sum of an empty subset), 
and that 

(4) B* = B*_x + {0 , bi} - B*_x U (£*_! + bi), 1 < i < k. 

Thus, obviously, \B*_± \ < \B*\. 
Taking into account that \BQ\ = 1 and that \B\ — k > d, for some i we have 

|BI -1| = \B*\ implying that residue bi (and element respectively) does not add 
new residue classes, i.e., (B \ bi)* = B*. Therefore, A' \ a* is d-full as well as A1. This 
fact contradicts the assumption that A' is the smallest d-full subset of A and proves 
the Lemma. • 

The next lemma refines the second assertion (ii) of Theorem 2.1. 

Lemma 2.4. — Let A be a set of integers taken from the segment [l,t]. Assume that 
\A\ = m > ci(^log£)1//2? t > to, and suppose that A is q-full for each q, 2 < q < ^ . 
Then the assertion (i) of Theorem 2.1 holds with d = 1. 

Proof. — Assume that d > 1 in Theorem 2.1. By the theorem, a long segment of 
an arithmetic progression belongs to A*(0,d). On the other hand, A is d-full (since 
d < 3£ 

m 
) and subset-sum S r(mod d) exists for each r, 1 < r < d. Combine a long 

segment of an arithmetic progression (with dinerence d) m interval 

i 
n 
2 

S A(0,d) - C2dra2, is A(0,d) + c2dm2] 
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(belonging to A*(0,d)) with subset-sums Si(modd), S2(modd), • • •, $d-i(modd) (these 
subset-sums are obtained without using elements of A(0,d)). Thus we obtain an 
interval 

[ | 5 A(0,d) - c^dm 4- max{5r (mod d) : 1 < r < d}, 2^ 4(0, d) + c2dm2], 

all integers of which belong to A*. In fact, if the length of this new interval is 
sufficiently large (0(m2) , for example), we will obtain the result of Theorem 2.1 
with d' — 1. Actually, since we are interested only in the case d > 1 and since 
max{5r(modd) :l<r <d} < dl = 0(dm2 / log rn), the length of the obtained interval 
is 

0 ( d r a 2 - m a x { S r(mod d) :l<r<d}) =0(dm2 -
dm2 

logm 
) = 0(dm2) 

which completes the proof. 

The latest property (Lemma 2.4) shows that in order to obtain a structural char­
acterization of A*, it is sufficient to verify that set A is g-full for all g's, 2 < q < ^ . 
Clearly, the new condition is weaker than (2): A can be g-full even if \A(0, q)| > m—~. 
However, from an algorithmic point of view this new condition is difficult to verify. 
To correct this we have to use some lemmas which determine different sufficient con­
ditions implying that set A is g-full. We will also show that it is sufficient to verify 
the prime numbers only. 

Lemma 2.5 ([3]). — If p is prime and 

(5) 
p-i 

i=i 
\A(i,p)\ >p~l 

then A is p-full. 

The proof of this lemma is presented here because of the difficulty in accessing of 
reference [3]. 

Proof. — Using the fact that all elements of A(i,p),i ^ 0, are relatively prime to 
p, introduce ring %p of residues mod p. In the following reasoning it is implied that 
all arithmetic operations, including the operations for computing subset-sums, are 
operations modulo p in 2ZV. 

Put, as in the proof of Lemma 2.3, B — {6i, 62? • • • ? for the multi-set of non-zero 
residues modulo p in A and define the sequence of multi-sets So, B±,..., Bk where 
Bo is an empty set and Bi — { 6 1 , . . . , b*} for i > 0. 

By the hypothesis, IJ5I = 0 -1 
i=1 \A(i,p)\ > P - 1. If for alH < p - 1, \BU\ < \Bt\9 

then \B*\ > \B*_X \ + 1 > \BQ \ + i = i + 1, i.e., > p, which concludes the proof, 
since we are dealing with residues modulo p. 

Otherwise, the fact that |,B|_1| = |B*| for some i < p — 1 implies that for any 
c G B*_±, c + bi also belongs to B*_X. Continuing this reasoning we obtain c + 
rbi G B*_X C B* for any r. Recalling that all operations are modulo p and that 
gcd(6i,p) = 1, one obtains that all residues modulo p are in I?*, i.e., A is p-full. • 
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