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THE SADDLE-POINT METHOD IN CN AND THE GENERALIZED
AIRY FUNCTIONS

by Francesco Pinna & Carlo Viola

Abstract. — We give a new version of the saddle-point method in N complex vari-
ables, for any N ≥ 2. We apply our theorem to the asymptotic analysis of suitable
multiple integrals of Airy’s type.

Résumé (La méthode du col dans CN et les fonctions d’Airy généralisées). — Nous
donnons une nouvelle version de la méthode du col en N variables complexes, pour
tout N ≥ 2. Nous appliquons notre théorème à l’analyse asymptotique de certaines
intégrales multiples du type d’Airy.

1. Introduction

1.1. The saddle-point method in C, a generalization of Laplace’s method for
real integrals, yields asymptotic formulae for integrals

(1) I(τ) =
∫
γ

eτh(z)g(z) dz,
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where z is a complex variable, as the real parameter τ tends to +∞. In (1),
γ is a path contained in an open set ∆ ⊂ C and not necessarily bounded, and
g(z) and h(z) are holomorphic functions in ∆.

The origin of the saddle-point method can be traced back to a posthumous
paper of Riemann [13]. Several authors, since the end of the nineteenth century
(see, e.g., [8], [3], [2], [15]), applied the saddle-point method to integrals of type
(1). The basic principle of the method, in its standard version, consists in
replacing γ with a new integration path λ, equivalent to γ by Cauchy’s theorem
so that

(2) I(τ) =
∫
λ

eτh(z)g(z) dz,

where λ contains a ‘nondegenerate’ (or ‘simple’) saddle-point z0 of eh(z), i.e.,
at which

(3) h′(z0) = 0, h′′(z0) 6= 0,

and, along λ, |eh(z)| = exp(Reh(z)) is maximal at z0 and at no other point
on λ. Under such conditions, and assuming g(z0) 6= 0 and the integral (2) to
be absolutely convergent, the main term in an asymptotic expansion of I(τ),
as τ → +∞, is determined by the values g(z0), h(z0) and h′′(z0).

One of the earliest applications (in [2]) of the saddle-point method concerns
the asymptotic study of the Airy function

(4) Ai(t) := 1
2πi

∫
γ1∪γ2

exp
(
tζ − 1

3ζ
3) dζ (t ∈ R, t→ +∞),

where the integration path is the union γ1 ∪ γ2 of two of the three half-lines
defined by

(5) γk =
{
%e2kπi/3 ∣∣ 0 ≤ % < +∞

}
(k = 0, 1, 2).

In (4), γ1 ∪γ2 is oriented from e4πi/3∞ to e2πi/3∞. The integral (4) was intro-
duced by Airy [1] in connection with a problem in optics, and is transformed
into an integral (1) by setting

(6) ζ = τ1/3z, t = τ2/3 (τ > 0).

This substitution yields

(7) Ai(τ2/3) = τ1/3

2πi

∫
γ1∪γ2

exp
(
τ

(
z − 1

3z
3
))

dz,

and this integral is of type (1) with g(z) = 1 and h(z) = z− 1
3z

3. The solutions
of h′(z) = 0 are z = ±1, and the relevant saddle-point for the integral (7) to
apply the saddle-point method is seen to be z0 = −1.
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Similarly, let

(8) Aik(t) := 1
2πi

∫
γ0∪γk

exp
(
tζ − 1

3ζ
3
)

dζ (k = 1, 2),

with γ0, γ1 and γ2 defined in (5), where the path γ0 ∪ γk is oriented from
e2kπi/3∞ to +∞. With the substitution (6) we get

(9) Aik(τ2/3) = τ1/3

2πi

∫
γ0∪γk

exp
(
τ

(
z − 1

3z
3
))

dz,

and for the integrals (9) with k = 1, 2 the relevant saddle-point is z0 = 1.
Applying to the integrals (7) and (9) the asymptotic formula (23) below

with z0 = −1 and z0 = 1 respectively, with g(z) = 1 and f(z) = exp(z − 1
3z

3),
and with τ = t3/2 in place of n, one easily gets, for t→ +∞,

Ai(t) ∼ 1
2
√
π
t−1/4 exp

(
−2

3 t
3/2
)

and
Aik(t) ∼ − i

2
√
π
t−1/4 exp

(
2
3 t

3/2
)

(k = 1, 2).

We refer to [4], pp. 279–289, or to [12], pp. 40–61, for a detailed treatment
of the saddle-point method in C and its applications to the Airy integrals.

1.2. The problem of extending the saddle-point method to integrals

(10)
∫
Γ

eτh(z1,...,zN )g(z1, . . . , zN ) dz1 · · · dzN

over suitable manifolds Γ in CN withN ≥ 2 was studied by Fedoryuk [6]. In [7],
Chapter 1, Section 4.5, Fedoryuk gives a brief account of his method. As is well
known, the complex Morse lemma ([5], Prop. 3.15, p. 142, or [7], p. 125) en-
sures that in a neighbourhood of a nondegenerate saddle-point

(
z

(0)
1 , . . . , z

(0)
N

)
of exph(z1, . . . , zN ) (see Definition 3.2 below) there exists a local change of vari-
ables transforming h(z1, . . . , zN )−h

(
z

(0)
1 , . . . , z

(0)
N

)
into a sum of squares. Sim-

ilarly to [16], Theorem 1, pp. 480–482, using Morse’s lemma one gets an expan-
sion of the integral (10) into an asymptotic power series of τ−1 as τ → +∞, pro-
vided the integration manifold Γ can be transformed into a manifold Λ equiv-
alent to Γ by Cauchy–Poincaré’s theorem, thus preserving the value of (10),
containing the nondegenerate saddle-point

(
z

(0)
1 , . . . , z

(0)
N

)
of exph(z1, . . . , zN )

as an interior point, and such that

(11) max
(z1,...,zN )∈Λ

Reh(z1, . . . , zN )
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is attained only at
(
z

(0)
1 , . . . , z

(0)
N

)
. Moreover, the coefficients of such an asymp-

totic series can be computed using Fedoryuk’s method (see [16], Theorem 2,
p. 483 and [7], formula (1.61), p. 125). Thus the main difficulty to get the
asymptotic expansion of (10) through Fedoryuk’s method is to locate the rel-
evant nondegenerate saddle-point

(
z

(0)
1 , . . . , z

(0)
N

)
and prove the existence of a

manifold Λ containing
(
z

(0)
1 , . . . , z

(0)
N

)
and satisfying the properties above.

In order to find a constructive process to transform Γ into an equivalent
manifold of ‘steepest descent’ for Reh(z1, . . . , zN ) thus ensuring that, on such
a manifold, (11) is attained only at

(
z

(0)
1 , . . . , z

(0)
N

)
, Fedoryuk introduced tech-

niques from algebraic topology based on homology groups, which, beside their
theoretical interest, proved to be difficult to apply in concrete examples. In fact,
in an example of dimension N = 2 arising from catastrophe theory, Ursell [14]
showed the non-uniqueness of steepest descent surfaces (see also the discus-
sion in Kaminski [11]), with the result that in most cases there is no available
method to transform the integration surface Γ into an equivalent surface Λ sat-
isfying the required properties, and not even a criterion to find towards which
nondegenerate saddle-point the surface Γ should be deformed.

The main example considered by Ursell [14] is an integral in C2 representing
a natural two-dimensional generalization of the Airy integral (4)–(7). Ursell
obtained results on the asymptotic behaviour of such an integral over a surface
with four nearly coincident saddle-points. His final comment is: “For two
complex variables little seems to be known . . . More work is needed on a method
of steepest descents for two complex variables, particularly on the deformation
of the two-dimensional surfaces of integration”.

The main purpose of the present paper is to circumvent the difficulties in-
volved in Fedoryuk’s topological deformation process by introducing a more
flexible analytic method to find the relevant nondegenerate saddle-point(
z

(0)
1 , . . . , z

(0)
N

)
of f(z1, . . . , zN ) for an N -dimensional integral

(12)
∫
Γ

f(z1, . . . , zN )ng(z1, . . . , zN ) dz1 · · · dzN (n ∈ N, n→ +∞),

for any fixed N ≥ 2. For the treatment of (12) with n ∈ N, we need not
assume f(z1, . . . , zN ) 6= 0. In Theorem 4.2 we obtain an asymptotic formula
for the integral (12) under assumptions which permit us to avoid the search
for an equivalent integration manifold of steepest descent for |f(z1, . . . , zN )|.
In Section 5 we give a self-contained proof of Theorem 4.2. We treat (12) as
an N -times iterated integral, and we apply the one-dimensional steepest de-
scent method to each variable successively. This allows us to dispense with
the global deformation process of the integration manifold. Our method, being
independent of Morse’s lemma, in principle could be extended, under suitable
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new assumptions, to the asymptotic analysis of the integral (12) in the neigh-
bourhood of a degenerate saddle-point of f(z1, . . . , zN ).

The applications we give in Section 6 show that in several interesting cases
the assigned integration manifold Γ can rather easily be transformed into an
equivalent manifold Λ satisfying the assumptions of Theorem 4.2. Our The-
orem 4.2 generalizes to any dimension the result proved for N = 2 by Hata
in [9], where the author applies his method to prove nonquadraticity measures
for logarithms of suitable rational numbers and concludes the introduction with
the words: “To establish the CN -saddle method may be an interesting problem
itself”.

Our result is based on the notion of ‘admissible’ saddle-point of f , which
we introduce in Definition 3.3 below. In Remark 3.4 we show that such a
notion is not essentially restrictive: up to applying a suitable invertible linear
transformation of the variables z1, . . . , zN , every nondegenerate saddle-point(
z

(0)
1 , . . . , z

(0)
N

)
is transformed into an admissible saddle-point.

If f(z1, . . . , zN ) 6= 0 and

(13) f(z1, . . . , zN ) = exph(z1, . . . , zN )

with a given holomorphic function h(z1, . . . , zN ), there is no ambiguity on the
value of the logarithm of f , and hence on the power

f(z1, . . . , zN )τ = exp (τ log f(z1, . . . , zN ))

for τ /∈ Z, provided one takes log f(z1, . . . , zN ) = h(z1, . . . , zN ), whence

(14) f(z1, . . . , zN )τ = exp(τ h(z1, . . . , zN ))

as in (10). In this case our Theorem 4.2 holds with τ ∈ R, τ → +∞, in place
of the integer exponent n→ +∞ in (12).

In Section 6 we apply Theorem 4.2 to prove asymptotic formulae for N -fold
Airy integrals of the type considered by Ursell [14] for N = 2, but without
restrictions concerning the mutual distance of the saddle-points. We give a full
treatment of such integrals for N = 2. For arbitrary N , we prove the required
asymptotic formula for a suitable choice of the N integration paths.

2. The saddle-point method in C

We briefly recall some well known aspects of the classical one-dimensional
saddle-point method which will be used in the following sections. The aim of
the method is to prove an asymptotic formula for an integral

(15) In =
∫
λ

f(z)ng(z) dz (n ∈ N, n→ +∞),
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