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THE UNBOUNDED DENOMINATORS CONJECTURE
[after F.Calegari, V.Dimitrov, and Y. Tang]

by Javier Fresán

Introduction

This written account of my talk at the Bourbaki seminar surveys some of the ideas
in the beautiful proof by CALEGARI, DIMITROV, and TANG (2021) of the unbounded de-
nominators conjecture, a long standing open problem in the theory of modular forms
that gives a simple criterion to decide whether a modular form with algebraic Fourier
coefficients at infinity is “invariant” under a congruence subgroup of SL2(Z) or not.

Throughout, we write Q for the algebraic closure of Q in C and Z ⊂ Q for the
subring of algebraic integers. We let H = {τ ∈ C | Im(τ) > 0} denote the upper half-
plane and(1) q = exp(πiτ). Recall that SL2(Z) acts on H∗ = H ∪ P1(Q) by Möbius
transformations and that congruence subgroups of SL2(Z) are those containing

Γ(M) = ker
(
SL2(Z) → SL2(Z/MZ)

)
= {A ∈ SL2(Z) | A ≡ I mod M}

for some integer M ⩾ 1. The unbounded denominators conjecture, originating from
work of ATKIN and SWINNERTON-DYER (1971), is now the following theorem:

Theorem 0.1 (Calegari–Dimitrov–Tang, 2021). Let f (τ) be a holomorphic function on the
upper-half plane H such that

(a) there exists an integer k and a subgroup Γ ⊂ SL2(Z) of finite index such that

f
(

aτ + b
cτ + d

)
= (cτ + d)k f (τ) (1)

holds for all matrices
(

a b
c d

)
in Γ;

(b) f locally extends to a meromorphic function around each point of P1(Q);

(c) f admits a Fourier expansion in ZJq1/NK for some integer N ⩾ 1.

Then the equality (1) holds for all matrices in a congruence subgroup of SL2(Z).
(1)One reason for choosing this unusual convention for q will be explained in remark 0.2 below.
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In what follows, we will refer to functions f satisfying assumptions (a) and (b)
simply as modular forms of weight k, or modular functions if k = 0, for the group Γ.
Note that every subgroup of finite index of SL2(Z) contains a matrix of the shape(

1 2N
0 1

)
for some integer N ⩾ 1. More precisely, the width of each cusp ζ ∈ P1(Q) is

defined as the smallest integer mζ ⩾ 1 such that the stabiliser of ζ under the action
of Γ on P1(Q) contains, up to conjugation in SL2(Z), one of the matrices ±

(
1 mγ

0 1

)
.

The assumption that f has a Fourier expansion in ZJq1/NK implies that the width of
the cusp at infinity divides 2N. For k = 0, in the conclusion of the theorem we can
take a congruence subgroup containing Γ(L(Γ)), where L(Γ) stands for the lowest
communmultiple of the widths of all cusps, a generalisation of the notion of level for
non-congruence subgroups.

Let us explain the name of the conjecture. If the coefficients of f ∈ QJq1/NK have
bounded denominators, which amounts to saying that f lies in the subspace

ZJq1/NK⊗Z Q = ZJq1/NK⊗Z Q ⊂ QJq1/NK,

then we can apply theorem 0.1 to an integral multiple of f . The contrapositive state-
ment then says the following:

Let f (τ) be amodular form for a subgroup of finite index of SL2(Z)with a Fourier
expansion in QJq1/NK. If f is not modular for any congruence subgroup, then
the Fourier coefficients of f have unbounded denominators.

By contrast, all modular forms f for congruence subgroups have bounded de-
nominators by the theory of Hecke operators (SHIMURA, 1971, Theorem 3.52). In a
nutshell, after multiplying f by a large enough power of the modular discriminant to
turn it into a holomorphic cusp form, we canwrite it as a linear combination of Hecke
eigenforms, and the Fourier coefficients of those are algebraic integers since they are
polynomial expressions with integer coefficients in the Hecke eigenvalues(2). Thus,
the condition of having bounded denominators completely distinguishes congruence
and non-congruencemodular forms among all modular formswith algebraic Fourier
coefficients at infinity.

By a theorem of MENNICKE (1965) and BASS, LAZARD, and SERRE (1964), the
group SLn(Z) has the congruence subgroup property for each n ⩾ 3, meaning that all its
subgroups of finite index contain a congruence subgroup. The same is true for other
arithmetic groups such as SL2(Z[1/p]) for each prime number p. Most subgroups
of finite index of SL2(Z), however, are not congruence. For example, given an inte-
ger g ⩾ 0, there is only a finite number of congruence subgroups Γ such that the
(2)This argument fails for non-congruence modular forms. Although there is still a way to define Hecke

operators, their action is trivial on those forms that do not come from the smallest congruence subgroup
containing Γ by results of Serre, presented in THOMPSON (1989), and BERGER (1994).
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curve X(Γ) = H∗/Γ has genus g (DENNIN, 1975), whereas there is an infinite number
of non-congruence subgroups with the same property (JONES, 1979). Some explicit
examples of non-congruence subgroups will be given in section 0.2 below.

One reason to care about modular forms for non-congruence subgroups is Belyi’s
theorem, according to which every smooth projective curve defined over Q can be re-
alised as a cover of the projective lineP1 that is only ramified at 0, 1, ∞ (such coverings
are often called Belyi maps). Taking the isomorphism H/Γ(2) ' P1 \ {0, 1, ∞} given
by the modular lambda function into account, any such curve is hence isomorphic
to X(Γ) for a subgroup Γ ⊂ Γ(2) of finite index. As we will see below, theorem 0.1
provides us with a criterion to decide whether Γ is a congruence subgroup or not in
terms of the integrality properties of the associated Belyi map.

0.1. First reductions

It will be enough to prove the theorem under the assumption that f is a modular
functionwith integer coefficients. We first explain the reduction to the case k = 0. For
this, consider the q-series expansions

λ(τ)

16
= q

∞

∏
n=1

(
1 + q2n

1 + q2n−1

)8

= q − 8q2 + 44q3 − · · · ,

η
(

τ
2
)2

= q1/12
∞

∏
n=1

(1 − qn)2 = q1/12 − 2q13/12 − q25/12 + · · · ,

(2)

which define a modular function for the group Γ(2) and a modular form of weight 1
for Γ(12) respectively. The first one induces an isomorphism(3)

H/Γ(2) ∼−→ P1 \ {0, 1/16, ∞}

that extends to a map sending the cusp at infinity to 0. The second one, a 12th root of
the modular discriminant ∆(τ/2), does not vanish on the upper half-plane and has
the property that its inverse has integer Fourier coefficients at infinity. Therefore,

F(τ) =
(

λ(τ)

16

)k f (τ)
η( τ

2 )
2k ∈ ZJq1/NK

satisfies the assumptions of theorem 0.1 with the weight k = 0 and the subgroup
Γ ∩ Γ(12) of SL2(Z). If F is a modular function for a congruence subgroup, then f is
amodular form for a congruence subgroup. Note that the first factor is there to kill the
pole at q = 0 introduced by η, thus keeping the condition that f (τ) is holomorphic at
infinity. This operation could, however, create new poles at other cusps; this explains
the lack of symmetry between infinity and the other cusps in the statement of the
theorem.
(3)One says that λ is a Hauptmodul for Γ(2).
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Remark 0.2. One explanation for the normalisations x = λ/16 and q = exp(πiτ) is
that they allow for the identity ZJqK = ZJxK coming from the expressions

x = q − 8q2 + 44q3 + · · · , q = x + 8x2 + 84x3 + · · ·

of x and q as power series with integer coefficients in q and x respectively.

Let us now explain how to reduce to the case f ∈ ZJq1/NK following a suggestion
of John Voight (CALEGARI, DIMITROV, and TANG, 2021, Remark 6.3.2). Let Γ be a finite
index subgroup of SL2(Z). By Belyi’s theorem, the curve X(Γ), its cusp at infinity,
the uniformiser q1/N , and the covering X(Γ) → P1 are defined over some number
field K. Moreover, the algebro-geometric interpretation ofmodular functions as ratio-
nal functions on the curve X(Γ) shows that they carry a natural structure of a K-vector
space, corresponding to those modular functions whose q-expansion at infinity has
coefficients in K. After enlarging K to its Galois closure if necessary, an element σ

of the Galois group Gal(K/Q) transforms the covering X(Γ) → P1 into a covering
X(Γσ) → P1 for possibly another subgroup Γσ of finite index, that we may conjugate
so that the cusp at infinity maps again to ∞. Since the Galois action on q-expansions
is given by applying σ to the coefficients, the conjugate of a modular function will
still be modular for a subgroup of finite index. Now, the modularity assumption
on f ∈ ZJq1/NK implies that there exists a number field L, with ring of integers OL,
such that f lies inOLJq1/NK. If α1, . . . , αd is aZ-basis ofOL, then fi(τ) = TrL/Q(αi f (τ))
lies in ZJq1/NK and is still modular for a finite index subgroup of SL2(Z) by the above.
By the special case of theorem 0.1 in which the function is assumed to have integer
coefficients, each of these functions is modular for a congruence subgroup Γi, so f is
modular for Γ1 ∩ · · · ∩ Γd.

To summarise, we are reduced to proving the following statement:
Theorem0.3. Let N ⩾ 1 be an integer and let f (τ) ∈ ZJq1/NK be a holomorphic function on
H that locally extends to a meromorphic function around each point of P1(Q) and is invariant
under the action of a subgroup Γ ⊂ Γ(2) of finite index. Then f is a modular function for a
congruence subgroup.

0.2. An interpretation in terms of Belyi maps

In the notation of theorem 0.3, let Y(Γ) = H/Γ and consider the diagram

Y(Γ)

π
��

f
// C

Y(2) ' P1 \ {0, 1/16, ∞}

66

where π is an étale cover and Y(2) and P1 \ {0, 1/16, ∞} are identified through the iso-
morphismλ/16. We can then think of f as amultivalued algebraic function of the variable
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λ/16 ramified at the points 0, 1/16, ∞, as indicated by the dotted arrow. By expanding
it as a Puiseux series at a branch above 0, the theorem can be rephrased as saying that

f lies in ZJλ(τ/m)
16 K⊗ C for some m ⩾ 1 if and only if Γ is a congruence subgroup.

Example 0.4 (Fermat curves). Let n ⩾ 1 be an integer and consider the Fermat curve
Xn with affine equation xn + yn = 1. Since the modular lambda function λ does not
take the values 0 and 1, there exist holomorphic functions x, y : H → C satisfying

x(τ)n = λ(τ) and y(τ)n = 1 − λ(τ).

The diagonal arrow in the diagram

H

λ
��

τ 7→(x(τ),y(τ))

((RR
RRR

RRR
RRR

RRR
RRR

R

P1 \ {0, 1, ∞} Xn
(x,y) 7→x

oo

factors through an isomorphism H/Φ(n) ' Xn, where the Fermat group Φ(n) is de-
fined as the kernel of the composition Γ(2) → Γ(2)ab → Γ(2)ab/n. Explicitly, Φ(n)
is generated by the n-th powers of the matrices A =

(
1 2
0 1

)
and B =

(
1 0
2 1

)
, and by the

commutator [∆, ∆] of the subgroup ∆ = 〈A, B〉 = Γ(2)/{±I} that they generate. It
is a classical result of KLEIN and FRICKE (2017, page 534) that Φ(n) is a congruence
subgroup if and only if n ∈ {1, 2, 4, 8}. This property is reflected by the fact that the
modular functions x(τ) and y(τ) have unbounded denominators unless n takes one
of those values, or yet by the fact that the coefficients of the power series(4)

n
√

1 − x =
∞

∑
m=0

16m(−1
n
)

m
m!

(
x

16

)m

∈ Q
s

x
16

{
have bounded denominators if and only if n ∈ {1, 2, 4, 8}, in which case they are all
integers. Indeed, writing the m-th coefficient as

am = (−16)m (n − 1)(2n − 1) · · · [(m − 1)n + 1]
nmm!

,

we see that, for each odd prime number p dividing n, the p-adic valuation vp(am) is
smaller than −vp(m!), which tends to −∞ as m → +∞. If 2 divides n, then v2(am) is
equal to 4m − mv2(n)− v2(m!), so that again it tends to−∞ as soon as v2(n) ⩾ 4 but
is non-negative for n ∈ {2, 4, 8} since v2(m!) = ∑∞

k=1bm/2kc ⩽ m. Finally, vp(am) ⩾ 0
for all primes p not dividing n, as can be seen by choosing r ⩾ vp(m!) and replacing
the 1s in the numerator of am with 1 = un + vpr for some integers u, v.
(4)Here, (α)m = α(α + 1) · · · (α + m − 1) denotes the Pochhammer symbol of a complex number α.
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