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POINTWISE ERGODIC THEORY: EXAMPLES AND ENTROPY
[after Jean Bourgain]

by Ben Krause

Overview

Pointwise ergodic theory, the motivation for discrete harmonic analysis, has at its
roots the classical theorem of BIRKHOFF (1931), which can be described as follows:

For every ergodic —that is, “sufficiently randomizing”— measure-
preserving transformation, τ, of a probability space, (X, µ), and any
integrable function f ∈ L1(X, µ), µ-almost surely, one can recover the
mean of f by considering the Cesáro sums

1
N ∑

n⩽N
f (τnx) →

∫
X

f dµ µ − a.e.

Informally, this theorem says that one can recover the spatial mean of f ,∫
X

f dµ,

by considering the temporal means{ 1
N ∑

n⩽N
f (τnx)

}
,

formed by “sampling” the function f at the “times” {τnx} and taking the appropriate
average.(1)

A classical question in pointwise ergodic theory concerned the almost-
everywhere existence of limiting behavior of averages

1
N

N

∑
n=1

τan f (1)

(1)Even in the case when τ is not ergodic, the temporal means
{ 1

N ∑n⩽N τn f (x)
}
still converge µ-almost

everywhere.
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where {an} is “sparse”; as is custom, here and throughout we use τk f to denote the
function

x 7→ f (τkx).

When the lower density of the sequence {an} is bounded away from zero

lim inf
|{n : an ⩽ N}|

N
> 0,

detecting convergence becomes more straightforward, and the classical question con-
cerned the existence of sequences {an} with zero density,

lim
|{n : an ⩽ N}|

N
= 0,

for which the averages (1) converged almost everywhere. In BELLOW and LOSERT
(1984), such a sequence was constructed; it consisted of taking long blocks of natural
numbers, followed bymuch longer gaps, followed by slightly longer blocks, followed
by even longer gaps, etc. In particular, this sequence had an upper Banach density
of 1

d∗({an}) := lim sup
|I|→∞ an interval

|{an} ∩ I|
|I| = 1.

The question remained, however, whether or not there existed upper Banach density-
zero sequences, {an} with d∗({an}) = 0, for which the almost-everywhere conver-
gence of the averages (1) could be proved. In particular, the classical question, ex-
plicitly posed first by Furstenberg, see also BELLOW (1982), was whether or not the
averages along the squares

1
N

N

∑
n=1

τn2
f

converged pointwise almost everywhere, initially for f ∈ L2(X). In breakthrough
work, BOURGAIN (1988b,c, 1989b) answered this question affirmatively, and proved
the almost everywhere convergence of (1) for any polynomial sequence,

{an = P(n)}, P ∈ Z[·],

and any f ∈ Lp(X), p > 1, for any σ-finite measure space X; this result was later
proven to be sharp (BUCZOLICH and MAULDIN, 2007; LAVICTOIRE, 2011).
Theorem 0.1. Suppose that (X, µ) is a σ-finite measure space, τ : X → X is a measure-
preserving transformation, and P ∈ Z[·] is a polynomial with integer coefficients. Then for
each 1 < p < ∞

1
N

N

∑
n=1

τP(n) f

converges µ-a.e.
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Although the issue of pointwise convergence is qualitative, Bourgain’s insightwas
to quantify the rate at which convergence occurred – and then to use an abstract trans-
ference argument first due to CALDERÓN (1968) to deduce these quantitative estimates
from a single “universal” measure preserving system. By considering sequences of
the form

Z 3 n 7→ τn f (x), x ∈ X fixed
and using the measure-preserving nature of τ, Bourgain was able to reduce matters
to proving estimates in the case of the integers with counting measure and the shift
(Z, | · |, τ : x 7→ x − 1).

In particular, Bourgain was after quantitative estimates on the oscillation of the
averaging operators

1
N

N

∑
n=1

f (x − P(n)), (2)

applied first to ℓ2(Z)-functions. A natural perspective on (2) is as a convolution of f
and

KN(x) :=
1
N

N

∑
n=1

δP(n)(x)

where δm denotes the point-mass at m ∈ Z; as this problem is ℓ2(Z)-based, the
Fourier transform method is naturally employed, and the key to the analysis is an
understanding of the exponential sums

1
N ∑

n⩽N
e−2πiβ·P(n),

which is accomplished via the circle method fromanalytic number theory; the interplay
between the “soft” analytic issue of pointwise convergence and “hard” analytic esti-
mates on the integers/Euclidean space via analytic-number-theoretic means is char-
acteristic of the fields of pointwise ergodic theory and discrete harmonic analysis.

I first came to understand Bourgain’s work by reading THOUVENOT (1990), which
I think explains Theorem 0.1 beautifully; the goal of these notes is to complement
THOUVENOT (1990) by trying to explain the motivation behind Bourgain’s argument.

Accordingly, for the sake of clarity, we will shift our focus slightly from proving
Theorem 0.1, and will instead focus on the related maximal estimate, in the represen-
tative case of L2(X).

Theorem 0.2. Suppose that (X, µ) is a σ-finite measure space, τ : X → X is a measure-
preserving transformation, and P ∈ Z[·] is a polynomial with integer coefficients. Then there
exists an absolute constant C, independent of (X, µ, τ), so that

‖ sup
N

∣∣∣ 1
N

N

∑
n=1

τP(n) f
∣∣∣‖L2(X) ⩽ C · ‖ f ‖L2(X).
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By Calderón’s transference principle, Theorem 0.2 follows from the analoguous
estimate of the integers: if we define

M f (x) := sup
N

∣∣∣ 1
N

N

∑
n=1

f (x − P(n))
∣∣∣, (3)

then our focus turns to establishing the following estimate

Theorem0.3. For any P ∈ Z[·], the following norm inequality holds: there exists an absolute
constant C so that

‖M f ‖ℓ2(Z) ⩽ C · ‖ f ‖ℓ2(Z).

Below, following the lead of THOUVENOT (1990), we will restrict to the case where

P(n) = nd,

as this eliminates somenumber-theoretic technicalitywhile still capturing the essence
of the problem.

Notation. — Here and throughoutwe abbreviate the complex exponential e(t) := e2πit,
so that wemay express the Fourier transform in Euclidean space, and on the integers,
respectively as

f̂ (ξ) =
∫

R
f (x) · e(−ξx) dx, g∨(x) =

∫
R

g(ξ) · e(ξx) dξ

f̂ (β) = ∑
n

f (n) · e(−βn), g∨(n) =
∫

T
g(β) · e(βn) dβ.

We will let

ϕk(t) := 2−k · ϕ(2−k · t)

denote the usual L1-normalized dyadic dilations, and for frequencies θ, we let

Modθ g(x) := e(θx) · g(x) (4)

so that
M̂odθ g(β) = ĝ(β − θ),

and recall the Hardy–Littlewood Maximal operator

MHL f (x) := sup
r>0

1
2r

∫ r

−r
| f (x − t)| dt or := sup

N⩾0

1
2N + 1

N

∑
n=−N

| f (x − n)|;

although we use the same notation to refer to both continuous and discrete maximal
operator, it will be clear from context which formulation we use.
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We will let [N] := {1, . . . , N}, and abbreviate ∑n⩽N := ∑N
n=1. We will use the

symbol c to denote suitably small constants, which remain bounded away from zero,
and C to denote suitably large constants, which remain bounded above. If we need
these constants to depend on parameters, we use subscripts, thus cd is a constant that
is small depending on d. We use X = O(Y) to denote the statement that |X| ⩽ C · Y,
and analogously define X = Od(Y).

Finally, we will use the heuristic notation

f “ = ” g

to denote moral equivalence: up to tolerable errors, f and g exhibit the same type of
behavior.

1. Discrete Complications

Before beginning our discussion of Theorem 0.3, let us explain why we might expect
this to be a challenging problem.

For problems with a “linear” flavor, the discrete theory essentially mirrors the
continuous theory

sup
r

1
r

∫ r

0
| f (x − t)| dt “ = ” sup

N

1
N

N

∑
n=1

| f (x − n)|

as can be seen by experimenting with functions of the form F(bxc) and using dilation
invariance of the real-variable maximal function to reduce attention to real variable
functions that are constant on unit scales.

The problems become dramatically more complicated once linearity is destroyed.
In this case, we consider the simple example of the Hardy–Littlewood maximal func-
tion along the curve t 7→ td. The continuous maximal function

M f := Md f := sup
r

∣∣1
r

∫ r

0
f (x − td) dt

∣∣ = sup
r

∣∣1
r

∫ rd

0
f (x − t)

1
dt1−1/d dt

∣∣, (5)

is just a weighted version of MHL via the pointwise majorization

1
r

∫ rd

0
| f (x − t)| 1

dt1−1/d dt ⩽
∞

∑
j=1

2−j/d ·
(2j/d

r

∫ 21−j ·rd

2−j ·rd
| f (x − t)| 1

dt1−1/d dt
)

⩽ C/d ·
∞

∑
j=1

2−j/d ·
( 2j

rd

∫ 21−j ·rd

2−j ·rd
| f (x − t)| dt

)
⩽ C/d ·

∞

∑
j=1

2−j/d · MHL f (x)

⩽ C · MHL f (x). (6)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2023


