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EXPONENTIAL GROWTH RATES IN HYPERBOLIC GROUPS
[after Koji Fujiwara and Zlil Sela]

by Clara Löh

A classical result of Jørgensen and Thurston shows that the set of volumes of finite
volume complete hyperbolic 3-manifolds is awell-ordered subset of the real numbers
of order type ωω; moreover, each volume can only be attained by finitely many isom-
etry types of hyperbolic 3-manifolds.

FUJIWARA and SELA (2020) established a group-theoretic companion of this result:
If Γ is a non-elementary hyperbolic group, then the set of exponential growth rates
of Γ is well-ordered, the order type is at least ωω, and each growth rate can only be
attained by finitely many finite generating sets (up to automorphisms).

In this talk, we outline this work of Fujiwara and Sela and discuss related results.

1. Main results
Geometric group theory provides a rich interaction between the Riemannian geome-
try ofmanifolds and the large-scale geometry of finitely generated groups. This bond
is particularly strong in the presence of negative curvature and explains a variety of
rigidity phenomena. The group-theoretic analogues of closed hyperbolic manifolds
are hyperbolic groups; more generally, the group-theoretic analogues of finite vol-
ume complete hyperbolic manifolds are relatively hyperbolic groups.

The volume growth behaviour of Riemannian balls in the universal covering of a
compact Riemannianmanifold is the same as the growth behaviour of balls in Cayley
graphs of the fundamental group. By definition, the exponential growth rates of
finitely generated groups measure the exponential expansion rate of balls in Cayley
graphs and thus are entropy-like invariants. While there is no direct connection
between the volume of a hyperbolic manifold M and the exponential growth rates
of π1(M), the results of FUJIWARA and SELA (2020) show that certain sets of such val-
ues share fundamental structural similarities.

To state these results, for a finitely generated group Γ, wewriteExp(Γ) ⊂ R for the
(countable) set of all exponential growth rates e(Γ, S)with respect to finite generating
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sets S of Γ. The automorphism group Aut(Γ) acts on the set FG(Γ) of all finite gen-
erating sets of Γ and e(Γ, f (S)) = e(Γ, S) holds for all S ∈ FG(Γ) and all f ∈ Aut(Γ).
More details on terminology and notation can be found in Appendix A.

Theorem 1.1 (well-orderedness; FujiwaRa and Sela, 2020, Theorem 2.2). If Γ is a hyperbolic
group, then Exp(Γ) is well-ordered (with respect to the standard order on R).

Theorem 1.2 (finite ambiguity; FujiwaRa and Sela, 2020, Theorem 3.1). The set
{S ∈ FG(Γ) | e(Γ, S) = r}/ Aut(Γ) is finite for every non-elementary hyperbolic
group Γ and every r ∈ R.

Theorem 1.3 (growth ordinals; FujiwaRa and Sela, 2020, Proposition 4.3). Let Γ be a non-
elementary hyperbolic group. Then the ordinal number ordExp(Γ) associated with Exp(Γ)
satisfies ordExp(Γ) ⩾ ωω.

Moreover, FUJIWARA and SELA (2020, Proposition 4.3) show that ordExp(Γ) = ωω

if epi-limit groups over Γ have a Krull dimension. In analogy with the case of hyper-
bolic 3-manifolds, they conjecture that ordExp(Γ) = ωω holds for all non-elementary
hyperbolic groups Γ (FUJIWARA and SELA, 2020, Section 4) .

Example 1.4. If F is a finitely generated free group of rank at least 2, then limit groups
over F have a Krull dimension (LOUDER, 2012). Hence, Theorems 1.1–1.3 show that
ordExp(F) = ωω and each value inExp(F) is realised by only finitelymany generating
sets (up to automorphisms of F).

The key idea for the proofs of Theorems 1.1–1.3 is inspired by the proofs by
Thurston and Jørgensen for the set of volumes of hyperbolic 3-manifolds and model
theory: One passes from sequences of generating sets (of bounded size) of the given
hyperbolic group Γ to a limit group over Γ with an associated finite generating set; i.e.,
limit groups play the role of cusped manifolds. The main challenge is then to com-
pute the exponential growth rate of this limiting object in terms of the exponential
growth rates appearing in the original sequence.

Overview

Basics on hyperbolic groups, exponential growth rates, and well-ordered countable
sets are recalled in Appendix A.We briefly explain themanifold context of the results
above in Section 2, with a focus on hyperbolic and simplicial volume. Section 3 gives
a proof outline of the main results. Finally, in Section 4, we mention applications and
extensions of the main results.
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2. Context: Volumes of manifolds and hyperbolicity

The results of FUJIWARA and SELA (2020) are analogues of the behaviour of volumes of fi-
nite volume complete hyperbolic 3-manifolds. We recall this background in Section 2.1.
The situation for simplicial volume is discussed in Section 2.2. In addition, wemention
right-computability as a further structural property of “volume” sets (Section 2.3).

2.1. Hyperbolic volume

The structure and volumes of hyperbolic 3-manifolds was analysed in the break-
through work of Jørgensen and Thurston.

Theorem 2.1 (volumes of hyperbolic 3-manifolds; ThuRston, 1979, Chapter 6). The set

{vol(M) | M is a finite volume complete hyperbolic 3-manifold}

is well-ordered (with respect to the standard order on R) and the associated ordinal is ωω.
Moreover, every value arises only from finitely many isometry classes of finite volume hyper-
bolic 3-manifolds.

We briefly summarise the main steps of the proof (GROMOV, 1981); the key is to
study the convergence of sequences of hyperbolic manifolds and to understand the
role of hyperbolic manifolds with cusps as limits of such sequences:

1. Every sequence (Mn)n∈N of complete hyperbolic 3-manifolds with uniformly
bounded volume contains a subsequence that converges in a strong ge-
ometric sense to a finite volume complete hyperbolic 3-manifold M and
limn→∞ vol(Mn) = vol(M). Furthermore, for “non-trivial” such sequences,
one can show that vol(M) > vol(Mn) holds for all members Mn of the subse-
quence.
This can be used to show that the set of hyperbolic volumes is well-ordered and
that every value can only be obtained in finitely many ways.

2. Every finite volume complete hyperbolic 3-manifold with k ∈ N cusps can be
obtained for each p ∈ {0, . . . , k} as the limit of a sequence of finite volume
complete hyperbolic 3-manifolds with exactly p cusps.
This can be used to show that the volume ordinal is at least ωk. Constructing
hyperbolic 3-manifolds with arbitrarily large numbers of cusps thus shows that
the volume ordinal is at least ωω. In combination with the first part, one can
derive that the volume ordinal equals ωω.

In contrast, in higher dimensions, the set of volumes of finite volume complete
hyperbolic manifolds leads to the ordinal ω. This follows from Wang’s finiteness
theorem and the unboundedness of hyperbolic volumes.
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Theorem 2.2 (Wang’s finiteness theorem; Wang, 1972). Let n ∈ N⩾4 and v ∈ R⩾0.
Then there exist only finitely many isometry classes of finite volume complete hyperbolic n-
manifolds M with vol(M) ⩽ v.

2.2. Simplicial volume

Simplicial volume is a homotopy invariant of closed manifolds. For several geometri-
cally relevant classes of Riemannian manifolds, the simplicial volume encodes topo-
logical rigidity properties of the Riemannian volume.

Definition 2.3 (simplicial volume; GRomov, 1982). The simplicial volume of an oriented
closed connectedmanifold M is the ℓ1-semi-norm of its (singular) R-fundamental class:

‖M‖ := ‖[M]R‖1 := inf
{ k

∑
j=1

|aj|
∣∣∣ k

∑
j=1

aj · σj is a singular R-fundamental cycle of M
}

For genuine hyperbolic manifolds, the simplicial volume leads to the same order-
ing and finiteness behaviour as the hyperbolic volume (Section 2.1):

Example 2.4 (hyperbolic manifolds). If M is an oriented closed connected hyperbolic
manifold of dimension n, then

‖M‖ =
vol(M)

vn
,

where vn ∈ R>0 is the hyperbolic volume of ideal regular geodesic n-simplices in
hyperbolic n-space (BENEDETTI and PETRONIO, 1992; THURSTON, 1979). A similar re-
lationship also holds in the complete finite volume case (THURSTON, 1979; FUJIWARA
and MANNING, 2011, Appendix A). In particular, this proportionality can be used to
prove mapping degree estimates in terms of the hyperbolic volume for continuous
maps between hyperbolic manifolds (GROMOV, 1982).

Passing to the setting of fixed hyperbolic fundamental groups, we obtain:

Example 2.5 (hyperbolic fundamental group). Let Γ be a finitely presented group and
let n ∈ N. Then the set

SVΓ(n) := {‖M‖ | M is an oriented closed connected n-manifold with π1(M) ∼= Γ}

is a subset of {‖α‖1 | α ∈ Hn(Γ; R) is integral}, where a class in Hn(Γ; R) is integral
if it lies in the image of the change of coefficients map Hn(Γ; Z) → Hn(Γ; R) (LÖH,
2023, Section 3.1).

If Γ is hyperbolic and n ⩾ 2, then ‖ · ‖1 is a norm on Hn(Γ; R) (by the results of
MINEYEV (2001) on bounded cohomology and the duality principle). In particular: The
set SVΓ(n) ⊂ R is well-ordered and for n ⩾ 4 the ordinal associated with SVΓ(n) is

▷ either 0 (if Hn(Γ; R) ∼= 0);
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▷ or ω (if Hn(Γ; R) 6∼= 0): In this case, normed Thom realisation shows that in-
deed infinitely many different values are realised (LÖH, 2023, Section 3.1).

For n ⩾ 4, finite ambiguity breaks down in this general topological setting: If M
is an oriented closed connected n-manifold, then for each k ∈ N, the manifold M
and the iterated connected sums Mk := M # (S2 × Sn−2)#k have the same simplicial
volume (GROMOV, 1982) and isomorphic fundamental groups. However, the mani-
folds M0, M1, . . . all have different homotopy types (as can be seen from the homol-
ogy in degree 2).

2.3. Right-computability

In the previous discussion, we focussed on the order structure of volumes and ex-
ponential growth rates. Many real-valued invariants in geometric group theory and
geometric topology also carry another, complementary, structure: They tend to have
an intrinsic limit on their computational complexity. In particular, such a limit gives
additional constraints on the possible sets of values.

Definition 2.6 (right-computable). A real number α is right-computable if the set
{x ∈ Q | x > α} is recursively enumerable.

For example, simplicial volumes of oriented closed connected manifolds are right-
computable real numbers (HEUER and LÖH, 2023). On the group-theoretic side, right-
computability naturally arises for stable commutator length of recursively presented
groups (HEUER, 2019) or L2-Betti numbers of groups with controlled word problem
(LÖH andUSCHOLD, 2022). Concerning exponential growth rates, we have the following:

Proposition 2.7 (right-computability of exponential growth rates). There exists a Turing
machine that

▷ given a finite presentation 〈S | R〉 and a finite set S′ of words over S t S−1,

▷ does

– not terminate if S′ does not represent a generating set of the group Γ described
by 〈S | R〉;

– terminate and return an enumeration of {x ∈ Q | x > e(Γ, S′)} if S′ represents
a generating set of Γ.

Corollary 2.8. Let Γ be a finitely presented group.

1. For every S ∈ FG(Γ), the real number e(Γ, S) is right-computable.

2. For every r∈Q, the truncated set {S∈FG(Γ) | e(Γ, S)< r} is recursively enumerable.

Proofs of these observations are provided in Appendix B. In particular, such re-
sults could be used to give a crude a priori upper bound for ordExp(Γ) by a “large”
countable ordinal for all finitely presented groups Γ with well-ordered set Exp(Γ).
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