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STRONG FORCING AXIOMS AND THE CONTINUUM PROBLEM
[after Asperó’s and Schindler’s proof that MM++ implies Woodin’s Axiom (∗)]

by Matteo Viale

Introduction

This note addresses the continuum problem, taking advantage of the breakthrough
mentioned in the subtitle, and relating it tomany recent advances occurring in set the-
ory.(1) We try to the best of our possibilities to make our presentation self-contained
and accessible to a general mathematical audience.(2)

Let us start by stating Asperó’s and Schindler’s result:

Theorem 0.1 (AspeRÓ and SchindleR, 2021). Assume MM++ holds. ThenWoodin’s axiom
(∗) holds as well.

We will address the following three questions:

▷ What is the axiom MM++?

▷ What is Woodin’s axiom (∗)?

▷ What is the bearing of Asperó’s and Schindler’s result on the continuum prob-
lem, and why their result is regarderd as a major breakthrough in the set theo-
retic community?

We give rightaway a spoiler of the type of answers we sketch for the above questions.
We have two major approaches to produce witnesses x of certain mathematical

properties P(x).

(1)The author acknowledges support from the project: PRIN 2017-2017NWTM8RMathematical Logic: mod-
els, sets, computability and from GNSAGA.

(2)Surveys on the topic complementing this note are (among an ample list) BAGARIA, 2005; KOELLNER,
2010; VENTURI and VIALE, 2023b; WOODIN, 2001a,b.
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A topological approach is exemplified by Baire’s category theorem: given a com-
pact Hausdorff topological space X one can find a “generic” point x ∈ X satisfying
a certain topological property P(x) by showing that P(x) can fail only on a “small”
(more precisely meager) set of points of X.

An algebraic approach is exemplified by the construction of algebraic numbers:
one takes a set of Diophantine equations P(x⃗) which are not jointly inconsistent, and
builds abstractly a formal solution in the ring Q(x⃗)/P(x⃗).

Duality theorems connect the algebraic point of view to the geometric one, for
example Hilbert’s Nullstellensatz relates solutions of irreducible sets of Diophantine
equations to generic points of algebraic varieties.

We will outline that Woodin’s axiom (∗) provides an “algebraic approach” to
the construction of set theoretic witnesses for “elementary” set theoretic properties,
MM++ a “geometric approach”, and Asperó’s and Schindler’s result connects these
two perspectives.

We plan to do this while gently introducing the reader to the fundamental con-
cepts of set theory.

The note is structured as follows:

▷ 1 is a brief review of the basic results of set theory with a focus on its historical
development and on the topological complexity of sets of reals witnessing the
failure of the continuum hypothesis.

▷ In 2 we quote some of Gödel’s thoughts on the continuum problem and on the
ontology of mathematical entities.

▷ 3 gives a brief overview of (the use in mathematics of) large cardinal axioms.

▷ In 4we introduce forcing axiomswith a focus on their topological presentations,
while giving a precise formulation of the axiom MM++. We also list some of the
major undecidable problems which get a solution assuming this axiom, among
which the continuum problem.

▷ 5 is a small interlude giving some insights on the forcingmethod, while relating
it to the notions of sheaf and of Grothendieck topos.

▷ 6 revolves about the notion of algebraic closure. In particular we outline how
Robinson’s notion of model companionship gives the means to transfer the con-
cept of “algebraic closure” developed for rings to a variety of other mathemati-
cal theories.

▷ 7 discusses what is the right language in which set theory should be axioma-
tized in order to unfold its “algebraic closure” properties.
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▷ 8 relatesWoodin’s generic absoluteness results for second order number theory
to properties of algebraic closure for the initial fragment of the universe of sets
given by Hℵ1 .

▷ 9 brings to light why Woodin’s axiom (∗) can be regarded as an axiom of “alge-
braic closure” for the larger initial fragment of set theory given by Hℵ2 . Putting
everything together we conclude by showing why Asperó’s and Schindler’s re-
sult establish a natural correspondence between the geometric approach and
the algebraic approach to forcing axioms.

I thank Alberto Albano, David Asperó, Vivina Barutello, Raphaël Carroy, Ralf
Schindler for many helpful comments on the previous drafts of this manuscript.
Many thanks to Nicolas Bourbaki for the invitation and the precious editorial sup-
port in the preparation and revision of this work.

1. Basics of set theory

Set theory deals with the properties of sets (the “manageable” mathematical objects)
and classes (the “not so manageable” entities).(3)

1.1. Axioms

The axioms of set theory can be split in three types (as is the case for many other
mathematical theories):

▷ Universal axioms which establish properties valid for all sets;

▷ Existence axioms which establish the existence of certain sets;

▷ Construction principleswhich allow for the construction of new sets fromones
which are already known to exist.

We present the axiomatization of set theory by Morse–Kelley MK with sets and
classes. Its axioms are distributed in the three categories as follows:

Universal axioms

▷ Extensionality: Two classes (or sets) are equal if they have exactly the
same elements.

(3)We refer the reader to JECH, 2003; KUNEN, 1980; MONK, 1969 for a systematic treatment of the topic. The
reader familiar with set theory can skim through or just skip this section.
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▷ Comprehension (a): Every class (or set) is a subset of V, the (proper)
class whose elements are exactly the sets.
(a proper class is a class which is not a set, a set is a class which belongs to V).

▷ Foundation: There is no infinite sequence 〈xn : n ∈ N〉 of classes such
that xn+1 ∈ xn for all n.

Existence axioms

▷ Infinity: ∅ and N are sets.

Weak construction principles

▷ Union, Pair, Product: If X, Y are sets, so are X ∪ Y, {X, Y}, X × Y.
▷ Separation: If P is a class and X is a set, P ∩ X is a set.

Strong construction principles

▷ Comprehension (b): For every property ψ(x), Pψ = {a ∈ V : ψ(a)} is a
class.

▷ Replacement: If F is a class function and X ⊆ dom(F) is a set, the point-
wise image F[X] of X under F is a set.

▷ Powerset: If X is a set, so is the class P (X) = {Y : Y ⊆ X} .

▷ Global Choice: For all classes C = {Xi : i ∈ I} of non-empty sets Xi,
∏i∈I Xi (the family of functions F with domain I and such that F(i) ∈ Xi
for all i ∈ I) is non-empty.

Some comments:

▷ By Foundation V cannot be a set else 〈xn : n ∈ N〉 with each xn constantly
assigned to V defines a decreasing ∈-chain.(4)

▷ Many of the objects of interest in mathematics are proper classes, for example
the family of groups, or the family of topological spaces. More generally for a
given (first order) theory T, the family of stuctures which satisfy the axioms
of T is a proper class (and exists in view of Comprehension (b)). There are
delicate ontological issues related to the notion of proper class, but they are
foreign to almost all domains of mathematics, with the notable exceptions of
category theory and set theory.

(4)V is not a set can also be proved without Foundation. Set theorists need foundation in order to infer
that the notion of well-foundedness is an elementary set theoretic property (more precisely it is a provably
∆1-property).
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▷ It is convenient for natural numbers to distinguish their ordinal type (which con-
fronts them according to which of these numbers “comes first”) from their cardi-
nal type (which assigns to each natural number n the family of sets which have
exactly n elements). When dealingwith arbitrary sets, their ordinal typemay not
be defined, while the cardinal type always is. Von Neumann devised a simple
trick to represent the finite ordinal types. One can inductively define the natural
number n as the set {0, . . . , n − 1} (i.e. 0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, …).(5)

▷ Set theoretic construction principles are of two sorts: the simple (or weak) ones
are for example those bringing from sets X, Y to sets X ∪ Y, {X, Y}, X × Y, or
from set X and class P to the set P ∩ X; the strong ones are the power-set axiom,
the replacement axiom, and the axiom of choice. Let us discuss briefly the role
of such axioms in the development of routine mathematics.

Weak construction principles The integers and rationals can be constructed
from the naturals using only weak construction principles: Z can be seen
as the subset of N × {0, 1} which assigns the positive integers to the or-
dered pairs with second coordinate 0 and the negative ones to those pairs
with second coordinate 1 (paying attention to the double counting of 0 as
(0, 0) and (0, 1)); Q can be seen as the subset of Z × (N \ {0}) given by
ordered pairs which are coprime.

Powerset axiom In order to build the reals from the rationals, one needs this
axiom: R is the subset of P (Q) given by Dedekind cuts.

Replacement axiom An adequate development of set theory requires it: con-
sider the function F on N given by F(0) = N, F(n + 1) = P (F(n)).
Without replacement it cannot be proved that F (or even the image of F)
is a set, it might only be a proper class.

Choice Choice also has a special status in ordinary mathematics, and many
mathematicians feel uneasy about it. However Choice is unavoidable: it
is essential in the proofs of the Hahn–Banach theorem, of the existence of
a base for infinite-dimensional vector spaces, or of the existence of a max-
imal ideal on a ring,…Even the equivalence of sequential continuity and
topological continuity for real valued functions requires it: if f : R → R is
not continuous at x, there is ε > 0 such that for each n one can find xn so
that |xn − x| < 1/n and | f (xn)− f (x)| > ε. The sequence (xn)n is (and in
most cases can only be) defined appealing to (countable) Choice.

(5)The transfinite ordinal types (or the Von Neumann ordinals) are those (possibly infinite) sets α which
are linearly ordered by ∈ and are transitive (i.e. such that when x ∈ y ∈ α, we have that x ∈ α as well).
The proper class of Von Neumann ordinals is linearly well-ordered by ∈. One can check that the natural
numbers are the finite Von Neumann ordinals and that N (the set of finite Von Neumann ordinals) is the
first infinite Von Neumann ordinal.
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