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1. INTRODUCTION

Quantum mechanics is often distinguished from classical mechanics by a state-
ment to the effect that the observables in quantum mechanics, unlike those in
classical mechanics, do not commute with one another. Yet classical mechanics is
meant to give a description (with less precision) of the same physical world as is
described by quantum mechanics. One mathematical transcription of this corre-
spondence principle is the that there should be a family of (associative) algebras
An depending nicely in some sense upon a real parameter 1i such that Ao is the
algebra of observables for classical mechanics, while An is the algebra of observ-
ables for quantum mechanics. Here, ~ is the numerical value of Planck’s constant
when it is expressed in a unit of action characteristic of a class of systems under
consideration. (This formulation avoids the paradox that we consider the limit
~ -~ 0 even though Planck’s constant is a fixed physical magnitude. )

The first order (in 1i) deviation of the quantum multiplication from the classi-
cal one is to be given by the Poisson bracket of classical observables. This idea goes
back to Dirac [Di], who emphasized the analogies between classical Poisson brack-
ets and quantum commutators. It played an important role in much of Berezin’s
work [Bel] [Be2] on quantization.

Although the terminology and much of the inspiration comes from physics,
noncommutative deformations of commutative algebras have also played a role of
increasing importance in mathematics itself, especially since the advent of quantum
groups about 15 years ago.

In the theory of formal deformation quantization, the "family of algebras ,A~"
is in fact a family *n of associative multiplications on a fixed complex vector
space A. More precisely, this family is given by a sequence of bilinear mappings
S. M. F.
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The condition for associativity of the product is that

for n = 0, 1 , 2, ....
The problem of formal deformation quantization is to classify such families up

to equivalence, where an equivalence between formal deformations B = Bo, J3i,...
and B’ = Bo, Bi, ... is, intuitively speaking, a formal family A - A of

maps such that b) = (a) *~ (b). More precisely, such a family is
given by a sequence G = Go, G1 , ... of linear maps from A to A which satisfy the
conditions

for n = 0, 1 , 2, ....
It is often useful to think of the deformation quantization as giving an asso-

ciative algebra structure on the space of formal power series with coefficients

in A and an equivalence as giving an isomorphism between such algebras.
In attempting to solve the existence problem recursively for the Bj ’s, one finds

at each stage an equation of the form 8 Bj = Fy, where F is a quadratic expression
in the terms determined previously; a similar equation arises for each Gj in the
equivalence problem. The operator 8 goes from bilinear to trilinear (or linear
to bilinear) A-valued functionals on A and is precisely the coboundary operator
for Hochschild cohomology with values in A of the algebra A with multiplication
given by Bo. (In the equivalence problem, one normally assumes the product
*o as given, so that Bo = Bo, and Go is assumed to be the identity.) This

cohomological approach to the deformation of algebras was established in the
1960’s by Gerstenhaber [Ge].

A program to apply the methods of Gerstenhaber to algebras of interest in
classical and quantum mechanics was laid out in 1978 by Bayen, Flato, Fronsdal,
Lichnerowicz, and Sternheimer [BFFLS]. (Another survey of the current state of



the art may be found in [FS].) The aim of this program has been to develop as much
as possible of quantum mechanics in terms of the deformed algebra structures,
without using the customary representations in Hilbert spaces. Here, A is taken to
be the space C°° (M) of smooth complex-valued functions on a manifold M which
represents the classical phase space. The undeformed product *o (i.e. Bo) is taken
to be the usual pointwise multiplication, so that (A, *~) is the algebra of classical
observables. Next, following Dirac, it is assumed that the "limit" [(a *h b -

(i.e. Bl (a, b) - is equal to a given classical Poisson bracket

{a, b} on A. This bracket should be a Poisson structure in the sense that it satisfies
the axioms of a Lie algebra together with the Leibniz identity {ab, c} = {a, c)b +
a{b, c}. In this context, a formal deformation B = Bo, Bi,... is called a *-product
(or star-product) if each of the bilinear maps Bj is a differential operator in each of
its arguments, annihilating the constant functions when j > 1. These conditions
make the *-product local and insure that the constant function 1 remains as the
unit element. Occasionally, the parity condition Bj(a,b) = is also

imposed.
From here on, we will use the terms "*-product" and "(deformation) quanti-

zation" interchangeably.
Among the Poisson manifolds (manifolds equipped with Poisson structure),

the symplectic manifolds are of particular interest. We recall that a symplectic
manifold is a manifold M equipped with a closed non-degenerate 2-form. Accord-
ing to Darboux’s Theorem, such a manifold is always locally isomorphic to R2n
equipped with the symplectic form expressed in coordinates (ql, ... , qn, pl, ... , pn)
as Ei dpi. The Poisson structure

is invariant under all diffeomorphisms preserving the symplectic form, so there
is a well-defined Poisson structure on any symplectic manifold. Non-symplectic
manifolds arise for instance as quotients of symplectic manifolds by symmetry
groups and as the classical limits of quantum groups.

The fundamental example of a *-product is the Moyal- Weyl product on R2~
with the Poisson structure just described. It comes from the composition of oper-
ators on coo(Rn) via Weyl’s identification [Wy] of such operators with functions



on R2n, and was used by Moyal [My] to study quantum statistical mechanics from
the viewpoint of classical phase space. The term Bl in the formal series for this
product is just i/2 times the "Poisson operator" (a, b) ~ {a, b}, and the full series
is essentially the exponential of Bl. We will define the "powers" of the Poisson
operator which enter in this series in a slightly more general setting. Let V be
a vector space, and let 7r be a skew-symmetric bilinear functional on V*. The
formula {a, b} _ 7r(da, db) defines a Poisson structure on V. Associated to the
bilinear operator 7r is a unique differential operator n : C°° (V x V) - C°° (V x V)
with constant coefficients for which {a, b} = 0*II(a ® b); here, a ® b is the function
(y, z) H a(y)b(z), and 0* : C°° (V x V) - Coo(V) is restriction to the diagonal.
Now we define the Moyal-Weyl product on V by

The space with this product will be called the Weyl algebra of V and
denoted by W(V).

If (xl, ... , zm ) are linear coordinates on V, then the Poisson brackets {Xr, xs}
are constants 7rrs (the components of 7r), and the operator Bj in the expansion of
the Moyal-Weyl product is

On a general Poisson manifold, the Leibniz identity implies that the Poisson
bracket is given by a skew-symmetric contravariant tensor (or "bivector" ) field 7r,
called the Poisson tensor, via the formula {a, b} _ 7r(da, db). If the rank of the
tensor 7r (i.e. the rank of the matrix function which represents
it in local coordinates, or the rank of the corresponding mapping from 1-forms to
vectors) is constant, then by a theorem of Lie [L] the Poisson manifold is locally
isomorphic to a vector space with constant Poisson structure. Hence such Poisson
manifolds, which are called regular, are always locally deformation quantizable; the
problem is to patch together the local deformations to produce a global *-product.

There is one case in which the patching together of local quantizations is easy.
The Moyal-Weyl product on a vector space V with constant Poisson structure is
invariant under all the affine automorphisms of V, since the notion of "operator


