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POINTWISE CONVERGENCE FOR THE SCHRÖDINGER EQUATION
[after Xiumin Du and Ruixiang Zhang]

by Jonathan Hickman

1. Introduction: the Carleson problem

1.1. Solutions to the Schrödinger equation

Suitably normalised, the free Schrödinger equation on Rn is the second order partial
differential equation

iut − ∆xu = 0. (1)

Here u is a complex-valued function of the space-time variables (x, t) ∈ Rn × R,
whilst ut and ∆xu denote the first order time derivative and spatial Laplacian, respec-
tively. We are interested in the Cauchy problem for this equation, wherebywe specify
an initial datum f and wish to solve{

iut − ∆xu = 0,
u(x, 0) = f (x)

(x, t) ∈ Rn × R. (2)

Depending on our hypotheses on f , what it means for u to be a ‘solution’ to the
equation (2) varies. Here we consider two examples:

Classical solution. If f is sufficiently regular, then elementary Fourier transform meth-
ods show that (2) has a unique solution in the classical sense.(1) For instance, if we
assume f ∈ S (Rn), the Schwartz space, then the unique solution is given by

u(x, t) := eit∆ f (x)

where eit∆ is the Schrödinger propagator

eit∆ f (x) :=
1

(2π)n

∫
R̂n

ei(x·ξ+t|ξ|2) f̂ (ξ)dξ. (3)

(1)In particular, the derivatives ut and ∆xu are all well-defined in the usual sense from calculus, and the
identities in (2) hold pointwise.
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Note that the regularity – or smoothness – of the initial datum f is crucial to these
observations. Indeed, the smoothness of f directly translates into the decay of the
Fourier transform f̂ (ξ) as |ξ| → ∞. This decay ensures the integral in (3) is well-
defined and also allows one to pass the derivatives inside the integral in order to
verify (1).

L2 solution. Now suppose f ∈ L2(Rn), without any additional regularity assump-
tions. In this case, Plancherel’s theorem allows us to define the Fourier transform
f̂ as a function in L2(R̂n), but in general we cannot conclude that f̂ is integrable.
Consequently, the integral formula (3) is not well-defined in the classical sense.

To circumvent these issues, we further appeal to the L2 theory of Fourier trans-
form. Note that the propagator eit∆ introduced above can be interpreted as a linear
operator on S (Rn) which, given an initial datum f , outputs the solution at time t.
Using Plancherel’s theorem, we can extend eit∆ to a Fouriermultiplier operator acting
on the whole of L2(Rn). In particular, we define

eit∆ f := F−1(eit| · |2 ·F f
)

for f ∈ L2(Rn),

where here F denotes the Fourier transform acting on L2(Rn). Furthermore, this
operator is an isometry of the L2 space, in the sense that

‖eit∆ f ‖L2(Rn) = ‖ f ‖L2(Rn) for all f ∈ L2(Rn) and all t ∈ R; (4)

this identity is typically referred to as conservation of energy.
As before, we may define

u(x, t) := eit∆ f (x),

but in general this is no longer a classical solution to the Schrödinger equation: for
instance, for a fixed time t, the best we can say about u( · , t) is that it belongs to
L2(Rn) and so the Laplacian ∆xu is not defined in the classical sense. However, we
can interpret u as a solution to (1) in the sense of distributions. Indeed, using (4) it
is not difficult to show u defines a distribution in S ′(Rn+1) and so ∂tu and ∆xu can
be understood in the distributional sense. Furthermore, a simple Fourier analytic
argument shows 〈i∂tu − ∆xu, ϕ〉 = 0 for all test functions ϕ ∈ S (Rn+1).

1.2. The Carleson problem

Once a solution u to (2) has been constructed, it is natural to investigate the behaviour
of u and how it relates to the initial datum f . There is a huge variety of different
questions one can ask in this direction. Herewe are interested in the classicalCarleson
problem, which aims to understand whether the initial datum can be recovered as a
pointwise limit of the solution.
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First consider the case where f ∈ S (Rn), so that the solution u(x, t) := eit∆ f (x)
is classically defined. By definition, we know the solution u satisfies u(x, 0) = f (x)
and is differentiable, and therefore continuous, with respect to t. In particular,

lim
t→0+

eit∆ f (x) = f (x) for all x ∈ Rn. (5)

The Carleson problem asks to what extent this elementary limit identity continues to
hold when we consider more general L2 solutions to the Schrödinger equation.

Since an L2 function is only defined almost everywhere, in order to make sense
of the problem for general initial data in L2(Rn) it is necessary to weaken the require-
ment that convergence holds for all x ∈ Rn in (5) to almost all x ∈ Rn. That is, given
f ∈ L2(Rn) we wish to determine whether

lim
t→0+

eit∆ f (x) = f (x) for almost every x ∈ Rn. (6)

Nevertheless, it is still unclear how to precisely interpret the above limit, since for
every time slice t (belonging to the continuum [0, 1], say) we have a choice of repre-
sentation for eit∆ f . We shall gloss over these technicalities for now and return to them
in §3.2 below.

It is not difficult to show that the limit holds in the L2-sense: that is, given
f ∈ L2(Rn) we have

lim
t→0+

‖eit∆ f − f ‖L2(Rn) = 0. (7)

Indeed, this can be easily verified for f ∈ S (Rn) using the integral formula (3) for
the propagator and the dominated convergence theorem. One can then pass to gen-
eral f ∈ L2(Rn) via density, using the conservation of energy identity (4).

On the other hand, there are examples of f ∈ L2(Rn) for which (6) in fact fails
(see §1.3 below). Thus, we are interested in determining an additional hypothesis on
f under which the above norm convergence (7) can be ‘upgraded’ to almost every-
where convergence. Contrasting the situation for f ∈ S (Rn) with that for general
f ∈ L2(Rn), it is natural that the additional hypothesis should enforce some degree
of regularity on the initial datum.

The above considerations lead us to consider the Sobolev spaces Hs(Rn). Roughly
speaking, Hs(Rn) consists of all f ∈ L2(Rn) with derivatives up to order s lying also
in L2(Rn). More precisely,

Hs(Rn) :=
{

f ∈ L2(Rn) : (1 − ∆x)
s/2 f ∈ L2(Rn)

}
, s ⩾ 0,

where (1 − ∆)s/2 denotes the fractional differential operator, defined in terms of the
Fourier transform F now acting on the space of distributions S ′(Rn) by

(1 − ∆x)
s/2 f := F−1((1 + | · |2)s/2 ·F f

)
.
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In particular, given f ∈ L2(Rn), we can alwaysmake sense of the fractional derivative
(1 − ∆x)s/2 f as a distribution, and f ∈ Hs(Rn) if this distribution coincides with an
L2 function. It is clear from the definitions that

H0(Rn) = L2(Rn) and Hs1(Rn) ⊇ Hs2(Rn) for 0 ⩽ s1 ⩽ s2.

Sobolev spaces provide a natural framework in which to formalise the Carleson
problem.

Problem 1.1 (CaRleson, 1980). Determine the values of s ⩾ 0 such that

if f ∈ Hs(Rn), then lim
t→0

eit∆ f (x) = f (x) for almost every x ∈ Rn. (8)

That is, we wish to determine the minimal degree of regularity (measured in
terms of the Sobolev space index s) for which almost everywhere convergence is
guaranteed to hold.

Aside from its intrinsic appeal, Problem1.1 is intimately related to important ques-
tions regarding the distribution of the solution eit∆ f (x) in space-time. Pointwise con-
vergence is typically proved via analysis of the Schrödinger maximal operator, an object
of interest in its own right. The maximal operator can in turn be studied using fractal
energy estimates for the Schrödinger solutions. We introduce these concepts in §3.2
and §3.5 below. Through these connections, progress on Problem 1.1 has led to new
developments on a surprising array of different problems, such as the Falconer dis-
tance problem (see, for instance, DU and ZHANG, 2019; GUTH, IOSEVICH, et al., 2020)
and the Fourier restriction conjecture (see WANG and WU, 2022).

1.3. A resolution of the Carleson problem: introducing the key re-
sults

Problem 1.1 has a rich history, parallelingmany important developments in harmonic
analysis over the last 40 years. We do not intend to give a complete survey of the
relevant literature, but focus on definitive results and recent highlights.

Whilst the n = 1 case of Problem 1.1 was fully understood by the early 1980s
through the works of CARLESON (1980) and DAHLBERG and KENIG (1982), in higher
dimensions the situation is much more nuanced. Nevertheless, a recent series of dra-
matic developments brought about an almost complete resolution.

Necessary conditions. — Problem 1.1 splits into two parts: finding necessary condi-
tions for the index s for (8) to hold and finding sufficient conditions. Both parts are
difficult. The recent spate of activity on the Carleson problem was initiated by the
surprising discovery of a new necessary condition on s.
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Theorem 1.2 (BouRgain, 2016). For all s < n
2(n+1) , there exists some f ∈ Hs(Rn) such

that (6) fails.

Theorem 1.2 relies on the construction of an explicit(2) initial datum f ; the proof
is intricate, involving number theoretic considerations. Prior to BOURGAIN (2016),
weaker necessary conditions were established in BOURGAIN (2013b), DAHLBERG and
KENIG (1982), and LUCÀ and ROGERS (2017).

We shall not discuss the proof of Theorem 1.2 here, but instead refer the reader to
the detailed exposition in PIERCE (2020). An alternative argument, based on ergodic
arguments rather than number theory, can also be found in LUCÀ and ROGERS (2019).

Sufficient conditions. — We now turn to positive results, which form the focus of this
article. In the wake of Bourgain’s counterexample, there was a flurry of activity on
the Carleson problem. In a major advance, the n = 2 case was completely settled
throughwork of DU, GUTH, and LI (2017). The higher dimensional case later followed
in a landmark paper of DU and ZHANG (2019).

Theorem 1.3 (Du and Zhang, 2019(3)). If f ∈ Hs(Rn) for some s > n
2(n+1) , then

lim
t→0+

eit∆ f (x) = f (x) holds for almost every x ∈ Rn.

Remark 1.4. As previously noted, there are measure-theoretic technicalities regard-
ing themeaning of the above statement, since the limit is taken over a continuum. We
address this in §3.2 below.

Together, Theorem 1.2 and Theorem 1.3 give an almost complete(4) answer to the
Carleson problem and constitute a major milestone in harmonic analysis and PDE.
Furthermore, Theorem1.3 is in fact a special case of a significantlymore general result
proved in DU and ZHANG (2019), which has a variety of additional applications: see
§3.5 below.

The proof of Theorem 1.3 builds on many important developments in harmonic
analysis and previous works on the Carleson problem in particular. For the purpose
of this article, we shall roughly divide the recent history of the problem into two
epochs.

(2)Strictly speaking, the proof of Theorem 1.2 proceeds by constructing a counterexample to the
Hs(Rn) → L1(Rn) boundedness of the Schrödinger maximal operator. This in turn implies the existence
of a counterexample to (8) through a variant of Stein’s maximal principle. See §3.2.
(3)The n = 1 and n = 2 cases of Theorem 1.3 were established earlier in CARLESON (1980) and DU, GUTH,

and LI (2017), respectively.
(4)That is, except for the question of behaviour at the endpoint exponent s = n/(2(n + 1)).
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