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ROTATION INVARIANCE OF CRITICAL PLANAR PERCOLATION
[after Hugo Duminil-Copin, Karol Kajetan Kozlowski, Dmitry Krachun, Ioan

Manolescu and Mendes Oulamara]

by Vincent Tassion

Introduction

Consider critical independent percolation on the square lattice Z2, viewed as a graph:
For each edge, flip a coin, the edge is kept with probability p = 1/2, it is deleted other-
wise. We thus obtain a random subgraph of Z2. The distribution of this random graph
is invariant under rotation of angle π/2, as it inherits the symmetries of the lattice. But if
we consider the large connected components, new symmetries emerge: DUMINIL-COPIN
et al. (2020) have shown that the distribution of these connected components is asymp-
totically invariant under all rotations. This result represents major progress towards
understanding critical phenomena in planar statistical mechanics. The main conjecture
in the field is that the distribution of large connected components is in fact invariant by
conformal transformations, and it satisfies a principle of universality: this distribution
does not depend on the underlying lattice. In this article, we give some general back-
ground on Bernoulli percolation, we state the new rotation invariance result and discuss
some key aspects of it: what role does the parameter 1/2 play? What heuristic reasons
justify the emergence of these symmetries? What are the main ideas behind rotational
invariance? Wemainly focus on one important ingredient of the proof: the star-triangle
transformation. Originated from the study of electrical networks, it allows the authors
to relate percolation on the square lattice to other auxiliary graphs, and “import” extra
symmetries satisfied by these graphs (namely symmetry under reflections).
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1. Phase transition of Bernoulli percolation

Bernoulli percolation was introduced in 1957 by BROADBENT and HAMMERSLEY (1957)
in order to understand the propagation of a fluid in a porous medium, modeled as
follows. Consider the square lattice Z2, which we see as a planar graph embedded
in the complex plane: its vertex set is V = {u + iv : u, v ∈ Z}, and the edge set E is
given by all linear segments [u, v] with |u− v| = 1. Fix a parameter p ∈ [0, 1], which
represents the porosity of the material we want to model.

For each edge e ∈ E toss a biased coin, and define

ωe =

{
0 with probability 1− p,

1 with probability p,

independently of the other edges. We say that the edge e is open if ωe = 1 (solid
edges in the figure below) and closed if ωe = 0 (dotted edges).

y

x

The terminology open/closed comes from the interpretation of ω as a porous mate-
rial: the fluid can only travel through open edges, and percolation aims at describing
the different paths that the fluid can follow. To this end, it is convenient to identify
ω with the union of all the open edges. This way, we see ω as a closed subset of C

and define its corresponding topological properties. We call open path a continuous
path with support in ω. For example, in the picture above, there exists an open path
from x to y. We emphasize that we do not impose that the path starts and ends at
vertices of Z2. We call cluster a connected component of ω. For example, above, we
surrounded a cluster made of a single edge. Despite this elementary mathematical
description, Bernoulli percolation offers a natural probabilistic framework to develop
and understand the theory of phase transitions, a key notion in statistical mechanics.

A natural question for Bernoulli percolation is whether there exists an infinite
cluster in ω. The answer depends on the underlying parameter: if p = 0 we have
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ω = ∅ and there is no infinite cluster. For p = 1 all the edges are open, and there
is a unique infinite cluster. When p varies continuously from 0 to 1, we observe a
drastic change of behaviour at a certain critical value pc. More precisely, elementary
monotonicity and ergodic arguments show that there exists a critical parameter pc
such that

p < pc =⇒ all the clusters are finite almost surely,
p > pc =⇒ there exists an infinite cluster almost surely.

In a groundbreaking work, KESTEN (1980) proved that pc = 1/2 for Bernoulli
percolation on the square lattice and obtained a precise description of the subcritical
phase (p < pc) and the supercritical phase (p > pc). The behaviour at p = pc = 1/2
is still the object of famous conjectures in the field, and the present article reviews
some recent progress in the study of this critical regime.

We refer to the manuscripts of GRIMMETT (1999), BOLLOBÁS and RIORDAN (2006)
and WERNER (2009) for general background on percolation theory.

Organization of this article. In Section 2, we state the new rotation invariance re-
sult of DUMINIL-COPIN et al. (2020), and explain its relation to conformal invariance
and universality of planar percolation in Section 3. The proof of rotation invariance
relies on a discrete tool, the star-triangle transformation. In Section 4, we introduce
this transformation, and in Section 5 we explain how it can be used to study the sym-
metries of certain percolation quantities. In Section 6, we discuss the role of the em-
bedding of the graph and explain how the proof reduces to a key stability lemma.

2. Crossing probabilities and rotation invariance

In this section, we consider critical Bernoulli percolation at p = pc = 1/2 and we
discuss the rotation invariance result of DUMINIL-COPIN et al. (2020). To keep this pre-
sentation light, we state a weaker version of the result: first we restrict to Bernoulli
percolation, while the original result applies to more general models (FK percola-
tion). Second, we state it in terms of rectangle crossings: the original result states
that the whole collection of clusters is rotationally invariant, after a suitable trunca-
tion. Stating this strong resultwould requiremore background, in particular a careful
definition of the state space for the collection of clusters.

For every a, b such that 0 ⩽ a ⩽ b, we define the rectangle

Ra,b = [−a, a]× [−b, b].

Through this article we identify R2 with the complex plane C. In particular, we see
Ra,b as a subset of C. Let ω be a critical Bernoulli percolation of the plane, seen as a
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random closed subset of C. We say that Ra,b is crossed in ω if there exists an open
path in Ra,b ∩ ω from the left side {−a} × [−b, b] to the right side {a} × [−b, b]. We
write Rθ

a,b for the rotation of Ra,b with angle θ around 0, and say that Rθ
a,b is crossed in

ω if there exists an open path in Rθ
a,b ∩ω connecting the images (under the θ-rotation)

of the left and right sides of Ra,b. See Figure 1 for an illustration of this event. We em-
phasize that the connection probabilities are defined in terms of continuous subsets
of the plane, hence the crossing events are well defined for arbitrary real numbers
a, b, θ.

b

Ra,b

a
b

Rθa,b

a

θ

Figure 1: Diagrammatic representations of the events that Ra,b = R0
a,b is

crossed (left) and Rθ
a,b is crossed with an arbitrary angle θ (right). In both

cases, the solid path represents an open path connecting the left side to the
right side of the rectangle.

RUSSO (1978), SEYMOUR and WELSH (1978) proved that crossing probabilities with
a fixed aspect ratio are non degenerated: For every fixed λ, θ, there exists c > 0 such
that

∀n ⩾ 1 c ⩽ P[Rθ
λn,n is crossed in ω] ⩽ 1− c.

The asymptotic behaviour of the critical crossing probabilities is not yet rigorously
understood, and is the object of a major open problem (see e.g. LANGLANDS, PICHET,
et al., 1992), that we can state as follows.

Conjecture 2.1. Consider a Bernoulli percolation ω on the square lattice with parameter
p = pc = 1/2.

(i) For every λ ⩾ 1, θ ∈ [0, π/2], the sequence (P[Rθ
λn,n is crossed in ω])n⩾1 converges

as n tends to infinity.

(ii) For every θ ∈ [0, π/2],

lim
n→∞

P[Rθ
λn,n is crossed in ω] = lim

n→∞
P[Rλn,n is crossed in ω].
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The first part of the conjecture can be interpreted as a “dilatation invariance” of
the model: the rectangle Rθ

λn,n is a dilatation of the rectangle Rθ
λ,1 by a factor n, and

the crossing probabilities for large rectangles do not depend on the dilatation parame-
ter n. The second part corresponds to a rotation invariance: the crossing probabilities
for large rectangles do not depend on the angle θ of the rectangle.

Three years ago, DUMINIL-COPIN et al. (2020) proved that crossing probabilities
are invariant under rotation (which corresponds to the second item of the conjecture
above). More precisely they establish the following theorem.

Theorem 2.2 (Duminil-Copin et al., 2020). Consider a Bernoulli percolation ω on the square
lattice with parameter p = pc = 1/2. For every λ ⩾ 1 and every rotation angle θ ∈ [0, π/2],
we have

P[Rθ
λn,n is crossed in ω] = P[Rλn,n is crossed in ω](1 + o(1))

as n tends to infinity.

Remarks:

▷ The case θ = π
2 is easy because the lattice is already invariant under π/2-

rotation. In contrast, the invariance for θ ∈ (0, π/2) is nontrivial and can not
be deduced from the symmetries of the lattice.

▷ A self duality argument (see e.g. GRIMMETT, 1999) implies that the rectangles of
the form [0, n + 1]× [0, n] are crossed with probability 1/2. Therefore, a direct
corollary of Theorem 2.2 is that for every θ ∈ [0, π/2],

lim
n→∞

P[Rθ
n,n is crossed in ω] =

1
2

.

▷ The theorem does not state that the crossing probabilities converge and the first
item in Conjecture 2.1 is still open.

3. Conformal invariance and universality

A much stronger symmetry of the crossing probabilities is conjectured, namely they
are expected to be conformally invariant (see LANGLANDS, POULIOT, and SAINT-AUBIN,
1994 and references therein). To state the conjecture, we use the notion of conformal
rectangles, thatwenowdefine. Let λ ⩾ 1. We call conformal rectangle ofmodulus λ a
pair (Ω, ϕ), where Ω ⊂ C is a simply connected open set, and ϕ is a homeomorphism
from the rectangle Rλ,1 to Ω such that its restriction ϕ|(0,λ)×(0,1) is a conformal map
from (0, λ)× (0, 1) to Ω.

For n ⩾ 1, notice that the blown up (n ·Ω, n · ϕ) is also a conformal rectangle of
modulus λ, and in particular it has well-defined left and right sides. We say that n ·Ω
is crossed if there exists an open path in n ·Ω from its left to its right side.
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