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RENORMALIZATION, FREEZING PHASE
TRANSITIONS AND FIBONACCI QUASICRYSTALS

 H BRUIN  R LEPLAIDEUR

A. – We examine the renormalization operator determined by the Fibonacci substitution
within the full shift on two symbols Σ := {0, 1}N. We exhibit a fixed point and determine its stable leaf
(under iteration of the operator acting on potentials V : Σ → R), which is completely determined
by the germ near the attractor of the substitution. Then we study the thermodynamic formalism for
potentials in this stable leaf, and prove they have a freezing phase transition at finite temperature, with
ground state supported on the attracting quasi-crystal associated to the Fibonacci substitution.

R. – Nous étudions les relations entre renormalisation, substitutions et transitions de
phase : nous montrons que la substitution de Fibonacci dans le shift plein à deux symboles Σ := {0, 1}N

génère un opérateur de renormalisation sur les potentiels V : Σ → R. Nous montrons que cet opéra-
teur possède un point fixe, uniquement déterminé par son germe proche de l’attracteur associé à la
substitution de Fibonacci. Nous déterminons aussi la feuille stable de ce point fixe. Dans un second
temps, nous montrons que tous les potentiels dans cette feuille stable présentent une transition de
phase congelante. En particulier, cela donne un nouvel exemple d’obtention d’un état fondamental
porté par un quasi-cristal avant le zéro absolu.

1. Introduction

1.1. Background

The present paper studies phase transitions from an ergodic theory and dynamical systems
point of view. It investigates renormalization, substitutions and phase transition initiated
in [2] and continued in [5].

Phase transitions are an important topic in statistical mechanics and also in probability
theory (see e.g., [11, 12, 23, 27]). The viewpoint presented here is different for several reasons.
One of them is that, here, the geometry of the lattice is not relevant(1), whereas in statistical
mechanics, the geometry of the lattice is the most important part.

(1) and we only consider a one-dimensional lattice.
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740 H. BRUIN AND R. LEPLAIDEUR

During the 1970’s, motivated by problems in statistical mechanics, Bowen, Ruelle and
Sinai (see [3, 24, 26]) introduced thermodynamic formalism into ergodic theory. Given a
dynamical system (X,T ) and a potential ϕ : X → R, the pressure function is given by

P(β) := sup

{
hµ(T ) + β

∫
ϕdµ

}
,

where the supremum is taken over the invariant probability measures µ, hµ(T ) is the Kol-
mogorov entropy and β is a real parameter. Any measure realizing the supremum is then
called an equilibrium state for βϕ.

For a uniformly hyperbolic dynamical system (X,T ) and a Hölder continuous poten-
tial ϕ, the pressure function β 7→ P(β) is analytic (see e.g., [3, 24, 15]) and there is a unique
equilibrium state µβϕ (for every β). This equilibrium also satisfies a Gibbs property; in the
dynamical systems language this condition expresses how the measure of n-cylinders scales:
There is K > 0 such that

(1) K−1 ≤ µβϕ(Zn)

exp(β
∑n−1
i=0 ϕ ◦ T i(x)− nP(β))

≤ K

for all n ≥ 1, all n-cylinders Zn and x ∈ Zn.
Since the late 1970s, people in dynamical systems focused on extending the notions and

results of thermodynamics to non-uniformly hyperbolic dynamical systems. This started
with the work of Hofbauer [13, 22] proving non-analyticity of pressure for a non-Hölder
potential ϕ on the shift-space ({0, 1}N, σ). This example is closely related to the Manneville-
Pomeau map, and an associated renormalization procedure, presented in [2], was the starting
point of the project this paper is part of. Ledrappier [17] showed that any finite number of
equilibrium can co-exist in similar examples (cf. also [4, 9] for the co-existence of multiple
equilibirum states in other settings). Weakening the Gibbs property may be necessary as well.
For instance, Yuri [29], in the setting of maps with neutral fixed points, used a version of weak
Gibbs in which theK in (1) is replaced byKn with limn

1
n logKn = 0. See [6, Section 3.1] for

similar results to smooth interval maps with critical points.
More recently, the original motivation came back into focus, and the question of phase

transitions is now a very active theme in ergodic theory. Nevertheless, due to equivalences
or interdependences in the “classical” settings between unique existence of Gibbs measures,
unique existence of equilibrium states and regularity of the pressure function, and also due
to historical or inspiration models (e.g., the Ising model in probability or Erhenfest vs.
Gibbs classification in statistical mechanics), the notion of phase transition may vary in the
literature. In this paper, we adopt a largely accepted definition now in dynamical systems: a
phase transition is characterized by a lack of analyticity of the pressure function.

Although analyticity is usually considered as a very rigid property and thus quite rare, it
turns out that proving non-analyticity for the pressure function is not so easy. Currently, this
has become an important challenge in smooth ergodic theory to produce and study phase
transitions, see e.g., [19, 8, 5] and also [14, Sec. 6] for the possible shapes of the pressure
function. We also refer to [25] for results on the regularity of the pressure in the non-compact
setting and [29, 21] for uniqueness of the equilibrium state, again in the non-compact case.

To observe phase transitions, one has to weaken hyperbolicity of the system or of regu-
larity of the potential; it is the latter one that we continue to investigate here. Our dynamical
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system is the full shift, which is uniformly hyperbolic. The first main question we want to
investigate is thus which potentials ϕ will produce phase transitions. More precisely, we are
looking for a machinery to produce potentials with phase transitions.

The main purpose of [2] was to investigate possible relation between renormalization and
phase transitions. In the shift space ({0, 1}N, σ), a renormalization is a functionH for which
there is an integer k ≥ 2 such that

(2) σk ◦H = H ◦ σ.

The link with potentials was made in [2] by introducing a renormalization operator R acting
on potentials and related to a solution H for (2). It is easy to check that constant length k
substitutions are solutions to (2). In [5], we studied the Thue-Morse substitution, which has
constant length 2. Here we investigate the Fibonacci substitution, which is not of constant
length. Several reasons led us to study the Fibonacci case:

Together with the Thue-Morse substitution, the Fibonacci substitution is the most
“famous” substitution and it has been well-studied. In particular, the dynamical properties
of their respective attracting sets are well-known and this will be used extensively in this pa-
per. As a result, we were able to describe the relevant fixed point of renormalization exactly.
Information of the left and right-special words in these attractors is a key ingredient to prove
existence of a phase transition; it is a crucial issue in the relations between substitutions and
phase transitions.

The type of phase transition we establish is a freezing phase transition. This means that
beyond the phase transition (i.e., for large β), the pressure function is affine and equal to
its asymptote, and the equilibrium state (i.e., ground state) is the unique shift-invariant
measure supported on an aperiodic subshift space, sometimes called quasi-crystal. One open
question in statistical mechanics (see [10]) is whether freezing phase transitions can happen
and whether quasi-crystal ground state can be reached at positive temperature. An affirmative
answer was given for the Thue-Morse quasi-crystal in [5]; here we show that this also holds
for the Fibonacci quasi-crystal.

We think that Fibonacci shift opens the door to study more general cases. One natural
question is whether any quasi-crystal can be reached as a ground state at positive temper-
ature. In this context we emphasize that the Fibonacci substitution space is also Sturmian
shift, that is, it encodes the irrational rotation (with angle the golden mean γ := 1+

√
5

2 ). We
expect that the machinery developed here can be extended to the Sturmian shift associated to
general irrational rotation numbers (although those with bounded entries in the continued
fraction expansion will be the easiest), possibly to rotations on higher-dimensional tori, and
also to more general substitutions.

1.2. Results

Let Σ = {0, 1}N be the full shift space; points in Σ are sequences x := (xn)n≥0 or
equivalently infinite words x0x1 . . . Throughout, let xj = 1−xj denote the opposite symbol.
The dynamics is the left-shift

σ : x = x0x1x2 . . . 7→ x1x2 . . .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE


