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CHARACTERIZATION OF THE UNIQUE EXPANSIONS
1 = ESi q""* AND RELATED PROBLEMS

BY

PAL ERDOS, ISTVAN JOO and VILMOS KOMORNIK (*)

RESUME. — On caracterise les developpements uniques de 1 en bases non entieres.
On donne une estimation pour la longueur des chiffres 0 consecutifs dans les deve-
loppements gloutons. On etablit certains relations entre ces proprietes et les nombres
de Pisot.

ABSTRACT. — We characterize the unique expansions in non-integer bases. We
estimate the length of consecutive 0 digits in the greedy expansions. We obtain some
relations between these properties and the Pisot numbers.

0. Introduction
Consider a number 1 < q < 2. By an expansion of a real number x we

mean a representation of the form

x=^£iq~\ £ , e{0 , l } -
1=1

It is clear that x has an expansion if and only if 0 <: x < l / ( q — 1).
Let us introduce the lexicographic order < between the real sequences :

(£i) < (e^) if there is a positive integer m such that EI = e\ for all i < m
and Cm < ^m- ^ ls easv to verify that for every fixed 0 < x < l / ( q — 1)

(*) Texte recu Ie 21 mai 1990, revise Ie 21 juin 1990.
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in the set of all expansions of x there is a greatest and a smallest element
with respect to this order : the so-called greedy and lazy expansion, cf. [4].
(The greedy expansions were studied earlier in [1] where they were called
/3-expansions.) A number x has a unique expansion if and only if its greedy
and lazy expansions coincide.

Let us recall that the digits of these expansions may be defined
recursively as follows : if m > 1 and if the digits ̂  of the greedy expansion
of x are defined for all i < m, then we put

^ P ifE.on^+T"1^.
fo '^Ei<m^~i+q~m>x.

If m > 1 and if the digits e, of the lazy expansion of x are denned for all
i < m, then we put

^ f° ifE^^-'+E^nz'r^,
£m ll ^Ei<m^-i+Z^q-m<x.

In section 1 we characterize the unique expansions of 1. This improves
some earlier results in [5]. As a by-product we obtain a new proof for the
characterization of the greedy expansions, obtained earlier in [2].

In [4] it was proved that for almost every 1 < q < 2 the greedy
expansion of 1 contains arbitrarily long sequences of consecutive 0 digits.
In section 2 we improve this result by giving an explicit estimate on the
length of these sequences. An analogous result is obtained for the lazy
expansions, too.

In section 3 we generalize some other results obtained in [4]-[7].
At the end of this paper we formulate some open questions.

The authors wish to thank the referee for drawing their attention to
the papers [2], [3] and [9].

1. Characterization of the greedy and
the unique expansions of 1

Fix 1 < q < 2 arbitrarily and consider an expansion of 1 :

00

(1) l=Y^£,q-\ ^ € { 0 , 1 } -
2=1

THEOREM 1
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UNIQUE EXPANSIONS 379

a) (1) is the greedy expansion of 1 if and only if

(2) (sk-^-i) < (£i) whenever Ck = 0.

b) (1) is the unique expansion of 1 if and only if (2) and

(3) (1 - Ck-^i) < (£i) whenever £k == 1.

are satisfied. \]

Remark 1. — It is easy to deduce from this theorem that if (1) is
the greedy (resp. unique) expansion of 1, then (2) (resp. (2) and (3)) is
satisfied for all k > 1. []

The proof of this theorem is based on some lemmas concerning the
more general expansions

00

(4) x=^£,q-\ £, €{0 ,1}
i=l

for arbitrarily fixed 1 < q < 2 and 0 <: x < l / { q - 1).

LEMMA 1
a) (4) is the greedy expansion of x if and only if

00

(5) ^e^g"1 < 1 whenever £k = 0.
i=i

b) (4) is the lazy expansion of x if and only if

00

(6) y^(l — £k+i)q~'1 < 1 whenever Ek = 1.
2=1

Proof :
a) If (5) is not satisfied for some Ck = 0, then x has another expansion

00

(7) x=^e\q-\ ^£{0 ,1}
1=1

such that £i = e\ for all i < k and e'^ = 1. Then the expansion (4) is not
greedy.
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If the expansion (4) is not greedy, then there is another expansion (7)
of x and there is a positive integer k such that ^ = e\ for all i < k and
Ck = 0, e^ = 1. It follows that

E^>^
i>k

and therefore (5) is not satisfied.
b) The assertion follows at once from a) if we remark that the

expansion (4) is lazy if and only if the expansion

(8) i /^-i)_^^(i_^-
i=l

is greedy. []

LEMME 2
a) If x > 1 (me? if the expansion (4) z'5 greedy, then (2) %s satisfied.
b) Ifx>l and if the expansion (4) %s unique, then (2) one? (3) are

satisfied.

Proof :
a) Assume that (2) is not satisfied for some Ck = 0, then either

L
(ek+i) == (^) or (ek+i) > (£i). In the first case we have

00 00

^£A;+^~' = ̂ L^^"2 = X > 1 ;
z=l i=l

hence the condition (5) of LEMMA 1 is not satisfied and the expansion (4)
is not greedy. In the second case there is an integer m such that £k-\-i = £i
for all z < m and £k-^-m = 1, £m = 0. If the expansion (4) were greedy,
then by LEMMA 1 we would have

00

Y^ek^q" < l ^ x .
i=l

Therefore x would have another expansion (7) such that e\ = £1 for all
L

i < m and e'^ > £m; hence (^) > (^). But this is impossible because (4)
is the greedy expansion.
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