
Astérisque
331, 2010, p. 1–12

COLEMAN’S L -INVARIANT
AND FAMILIES OF MODULAR FORMS

by

Glenn Stevens

Abstract. — We prove the conjecture of Mazur, Tate, and Teitelbaum with Coleman’s
L -invariant for a newform f of arbitrary weight k0 ≥ 2 of split multiplicative type
at a prime p > 2. The key step in the proof is to show that Coleman’s L -invariant
is given by L (f) = −2pk0/2α′(k0), where α(k) is the eigenvalue of Up acting on the
germ of a Coleman family fk passing through f at k = k0.

Résumé (Représentations `-adiques de groupes p-adiques). — On démontre une conjecture
de Mazur, Tate et Teitelbaum, en termes de l’invariant L de Coleman, pour une
forme primitive f de poids arbitraire k0 ≥ 2 et de type multiplicatif déployé en un
nombre premier p > 2. Le point clé de la preuve consiste à montrer que l’invariant
L de Coleman est donné par L (f) = −2pk0/2α′(k0), où α(k) est la valeur propre
de Up agissant sur le germe d’une famille de Coleman fk passant par f en k = k0.

Statement of results

Let p be a prime > 2 and N be a positive integer with p6 |N . Let f be a classical
newform over Γ0(Np) of even weight k0 + 2 ≥ 2 and assume f is split multiplicative
at p, thus

ap(f) = pk0/2

where ap(f) is the eigenvalue of the U -operator at p acting on f . Under these hy-
potheses, Coleman [2] defined an L -invariant L (f) which he conjectured to be equal
to the higher weight Mazur-Tate-Teitelbaum L -invariant [16]. In this paper we will
prove Coleman’s conjecture. More precisely, let X := Z/(p−1)Z×Zp with Z embed-
ded in X diagonally and let Lp(f,−) : X −→ Cp be the p-adic L-function attached
to f as in [16]. We will prove the following theorem.

Main Theorem. — L′p(f, 1 + k0/2) = L (f) · L∞(f, 1 + k0/2).
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2 G. STEVENS

In the special case of weight two (k0 = 0), in which case, L (f) takes the familiar
form L (f) = log(qf )/ord(qf ) when f has rational Fourier coefficients, this was con-
jectured by Mazur, Tate, and Teitelbaum [16] and proved by Ralph Greenberg and
the author in [11, 12]. In case f is split multiplicative of weight k0 + 2 > 2, Mazur,
Tate, and Teitelbaum offered no precise formula for L (f), but they did predict that
L (f) could be described purely in terms of local p-adic data associated to f and
that, in particular, L (f) should not change when f is twisted by a Dirichlet charac-
ter χ with χ(p) = 1. Three separate and apparently independent definitions of L (f)

were later proposed. The first was given by Jeremy Teitelbaum [18], but only in the
case where f corresponds to a quaternionic modular form via the Jacquet-Langands
correspondence. Robert Coleman gave an analogous definition in [2] in the general
case, which we will briefly recall in section 2 of this paper. A third definition was
proposed by Fontaine and Mazur [15] based on Fontaine’s theory of semistable p-adic
galois representations. These three definitions gave rise to three separate conjectures
of Mazur-Tate-Teitelbaum type. All three of these conjectures have now been proved.

The L -invariants of Coleman and Teitelbaum can be approximated p-adically on a
computer, which enabled early numerical confirmation of the Coleman and Teitelbaum
conjectures [6, 7, 18]. On the other hand, the Fontaine-Mazur L -invariant appears to
be beyond the reach of a computer. Nevertheless, it was the Fontaine-Mazur version
of the conjecture that was the first to be proved – in 1996, by Kato, Kurihara, and
Tsuji [13]. The Coleman version of the conjecture was established by the author
shortly thereafter and described in [17], thus also proving indirectly that the Fontaine-
Mazur and Coleman L -invariants are the same. Coleman and Iovita [5] later gave a
direct proof that all three L -invariants—including Teitelbaum’s invariant when it is
defined—are the same. For an excellent overview of the history of the L -invariant and
the Mazur-Tate-Teitelbaum conjecture, see Colmez’s survey [9]. The connection with
Kato’s Euler systems and the p-adic Birch-Swinnerton-Dyer conjecture, including the
proof by Kato, Kurihara, and Tsuji given in the language of (ϕ,Γ)-modules, is also
beautifully described in Colmez’s Bourbaki seminar notes [8].

As in the weight two case (see [11, 12]), our proof of Coleman’s conjecture in the
higher weight case divides naturally into two steps (Theorems A and B below). To
state Theorems A and B, we first recall that Coleman [4] constructed a p-adic analytic
family fk of overconvergent p-adic modular forms passing through our fixed newform
f . This family is defined for k in an open set B ⊆ X containing k0 and satisfies
fk0 = f . Coleman’s family is an eigenfamily for the U -operator and we may therefore
consider the eigenvalue α(k) of U acting on fk. The function α(k) is a p-adic analytic
function of k ∈ B so we may consider the derivative of α at the special point k0 ∈ B.

Theorem A. — L′p(f, 1 + k0/2) = −2 · p−k0/2 · α′(k0) · L∞(f, 1 + k0/2).

Just as in the weight two case, the proof of Theorem A depends on the existence
of a two variable p-adic L-function with certain properties. The existence of such a
p-adic L-function was proved in the higher weight case in [17]. With the two-variable

ASTÉRISQUE 331



COLEMAN’S L -INVARIANT 3

p-adic L-function in hand, the proof of theorem A proceeds exactly as in the weight
two case (see [11, 12]).

The rest of this note is dedicated to proving the following theorem.

Theorem B. — L (f) = −2 · p−k0/2 · α′(k0).

The Main Theorem is an immediate consequence of Theorems A and B. We remark
that Colmez [10] has also proven Theorem B, but in terms of the Fontaine-Mazur
L -invariant.

1. The Gauss-Manin connection with Frobenius structure

We adopt Coleman’s notations as in [2] with only one modification. Namely, we will
add full level 2 structure to the moduli space. This rigidifies the setup and simplifies
the calculations (see especially the proof of Proposition 3.1(2)). We let X be the
modular curve X(Np, 2) with level Np structure (a cyclic subgroup of order Np) plus
full level 2 structure. (If 2|N we assume that the additional level 2 structure extends
the 2-part of the level N structure.) The p-adic rigid analytic space Xan attached to
X is the union of three disjoint parts, namely,

Xan = Z∞ ∪W ∪ Z0

where Z∞ and Z0 are the ordinary affinoids containing the ∞ and 0-cusps respec-
tively, and W is the union of the supersingular annuli. Following Coleman, we write
W∞ = Z∞ ∪W and W0 = Z0 ∪W .

Let Y = Y (Np, 2) denote X with the cusps deleted. Let π : E −→ Y be the
universal elliptic curve with level structure over Y and let H be the relative de
Rham cohomology sheaf over X with log singularities at the cusps. Then H is a
coherent O-module locally free of rank 2 over X. As Katz explains in [14] we have a
canonical decomposition

H = ω−1 ⊕ ω
where ω := π∗Ω

1
E/Y For any nonnegative integer k we let

Hk := Symmk(H ) = ω−k ⊕ ω2−k ⊕ · · · ⊕ ωk.

The Gauss-Manin connection ∇ : H −→H ⊗ Ω induces a connection

∇ : Hk −→Hk ⊗ Ω

for each integer k ≥ 0, which we also call the Gauss-Manin connection.
The Deligne-Tate map ([14]) preserves Z∞ and extends to a wide open neighbor-

hood of Z∞ properly contained in W∞. Accordingly, the Gauss-Manin connection is
endowed with a natural Frobenius structure over some sufficiently small wide open
neighborhood of Z∞. Katz spells out precisely how big this neighborhood can be,
but this is a technical point that we will not need. It will be convenient to simplify
the notation and write Z†∞ to denote a choice of such a wide open neighborhood of
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4 G. STEVENS

Z∞ with the additional property that the intersection of Z†∞ with any supersingular
annulus is a concentric subannulus.

For k an integer, let M†k+2 := ωk+2(Z†∞) denote the space of overconvergent p-adic
modular forms of weight k + 2 and level (Np, 2) as before. For k ≥ 0 we let

κ : M†k+2 −→Hk ⊗ Ω(Z†∞)

be the Kodaira Spencer map (see §4 of [3]). The canonical projection Hk −→ ω−k

induces a surjection Hk(Z†∞) −→ M†−k, and Coleman proves in [3] that there is a
canonical Qp-linear section

ν : M†−k −→Hk(Z†∞)

satisfying the equation

∇(ν(g)) = κ(θk+1g)/k! ∈Hk ⊗ Ω(Z†∞)

for any g ∈M−k. Here θk+1 : M†−k −→M†k+2 is the operator defined on q-expansions
by

θk+1 :
∑
n≥0

anq
n 7−→

∑
n≥0

nk+1anq
n.

For details, see Proposition 4.3 of [3].
Following Katz [14], Coleman [2] also defines a Frobenius structure on Z†∞ which

gives rise to a “Frobenius operator" Φ acting on the cohomology of Hk, ωk, and
Ω. Morevover, Φ commutes with ∇ : Hk −→ Hk ⊗ Ω on Z†∞ (see §11 of [2]). On
q-expansions of modular forms of weight k, Φ is given by Φ = pkV where V is the
operator on q-expansions given by V (f)(q) = f(qp), i.e.

V :
∑
n≥0

anq
n 7−→

∑
n≥0

anq
np,

2. Coleman’s L -invariant.

In this section we recall Coleman’s definition of the L -invariant L (f) of a split
multiplicative p-newform f of weight k0+2 ≥ 2. Let H ∗

k0
denote the complex of sheaves

associated to Hk0
∇−→Hk0 ⊗ Ω and consider the hypercohomology H1(X,H ∗

k0
) with

respect to the covering {W∞,W0} ofX. The Hecke operators act on this space and the
systems of eigenvalues that occur in it are the same as those that occur in the space
of classical modular forms of weight k0 and corresponding level. In particular, letting
K be the field generated over Qp by the eigenvalues of the Hecke operators acting
on f , we obtain a Qp-subspace H(f) ⊆ H1(X,H ∗

k0
) endowed with an action of the

field K with the property that H(f) is a 2-dimensional K-vector space on which the
Hecke operators act as scalars according to the eigenvalues of f . Using his theory of p-
adic integration, Coleman endows H(f) with a natural monodromy module structure
in which the monodromy is non-trivial. In [15], Mazur attaches an L -invariant to
any two dimensional monodromy module with non-trivial monodromy. Coleman’s L -
invariant can be defined simply as the L -invariant of Coleman’s monodromy module.
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COLEMAN’S L -INVARIANT 5

We will use the more concrete definition that Coleman gives in [2]. For simplicity,
we assume k0 > 0 so that there are no nonzero horizontal sections of Hk0 defined on
all of W∞ nor on all of W0, i.e. H0(W∞,H ∗

k0
) = H0(W0,H ∗

k0
) = 0. On the other

hand, one generally does find non-zero horizontal sections of Hk0 on the supersingular
annuli W = W∞ ∩W0. Indeed, Coleman constructs two maps

σ, ρ : Mk0+2 −→ H0(W,H ∗
k0)

defined on the spaceMk0+2 of classical modular forms of weight k0+2 and appropriate
level. The map σ is defined using Coleman integration (Definition 2.1 below) while
the map ρ is defined in terms of residues (Definition 2.2).

Let k ≥ 0 and f ∈ Mk+2 be a classical Hecke eigenform. Let α be the eigen-
value of the U -operator acting on f . We suppose α 6= 0. The differential form
ωf := κ(f) ∈Hk⊗Ω(W∞) represents a cohomology class [ωf ] ∈ H1(W∞,Hk) and the
Frobenius operator Φ acts on ωf and also on [ωf ]. Indeed, we have Φ([ωf ]) = pk+1

α ·[ωf ].
Now Coleman’s integration theory gives us a well-defined flabby antiderivative I∞(f)

defined on all of W∞ which is rigid analytic on the ordinary residue disks, is log-
analytic on the supersingular annuli and satisfies the following two properties

– I∞(f) satisfies the differential equation

∇(I∞(f)) = ωf on W∞.

– the flabby analytic section

I∞(f)− α

pk+1
Φ(I∞(f))

of Hk is rigid analytic on Z†∞ (i.e. not only on Z∞, but also on some wide open
neighborhood of Z∞).

Similar considerations give rise to a well-defined flabby analytic section I0(f) of Hk

over W0 satisfying the differential equation

∇(I0(f)) = ωf on W0.

Both I0(f) and I∞(f) are defined on the overlap W = W∞∩W0. Coleman makes the
following definition.

Definition 2.1. — If f ∈Mk+2 is a classical Hecke eigenform then we define
σ(f) ∈ H0(W,H ∗

k ) to be the horizontal section of Hk on W given by

σ(f) := I∞(f)|W − I0(f)|W .

The residue map ρ : Mk+2 −→ H0(W,H ∗
k ) is defined using the map

Res : Hk ⊗ Ω(Z†∞) −→ H0(W,H ∗
k )

which in turn is defined by Res(ω) := the unique horizontal section of Hk onW whose
restriction to Z†∞ ∩W is the residue of ω restricted to this disjoint union of oriented
annuli. Note that here as elsewhere we use the standard orientation of the annuli, i.e.
the orientation in which Z∞ is interior to W .
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6 G. STEVENS

Definition 2.2. — Given f ∈ M†k+2, we let ωf := κ(f) ∈ Hk × Ω(Z†∞) and define
ρ(f) := Res(ωf ).

Definition 2.3. — Coleman’s L -invariant of a split multiplicative newform f ∈Mk+2

is defined to be the unique element L (f) ∈ K for which σ(f) = L (f) · ρ(f).

The existence and uniqueness of such an L -invariant was, of course, proved by
Coleman (see [2]).

3. Families of modular forms

First of all we have the Eisenstein family. For each integer k there is an overcon-
vergent p-adic modular form Ek of weight k whose q-expansion is given by

Ek := 1 + 2ζp(1− k)−1
∑
k≥1

σ∗k+1(n)qn.

Here ζp(s) is the Kubota–Leopoldt p-adic zeta function and when k = 0 the above
equality is understood to mean E0 = 1. (Recall ζp(s) has a simple pole at s = 1). For
integral k ≥ 0 we set

tk :=
1

2
ζp(1 + k) · E−k and Gk :=

1

2
ζp(−1− k) · Ek+2.

Then tk ∈ M†−k is an overconvergent modular form of weight −k and Gk ∈ Mk+2 is
a classical modular form of weight k + 2. The family tk extends to a meromorphic
family of Eisenstein series for k ∈ X with a simple pole at k = 0 and Gk defines a
meromorphic family with a simple pole at k = −2. Moreover Gk = t−2−k. The special
point k = 0 will play a crucial role in the proof of Theorem B.

Proposition 3.1. — The following assertions hold.
1. The family tk, k ∈X , has a simple pole at k = 0 with residue given by

lim
k→0

ktk =
1

2
·
Å

1− 1

p

ã
.

2. The residue of G0 along any supersingular annulus is 1/2:

ρ(G0) = −1

2
.

Proof. — The first assertion is an immediate consequence of the well-known fact
that the Kubota-Leopoldt p-adic zeta function ζp(s) has a simple pole at s = 1 and
that the residue at s = 1 is given by

lim
s→1

(s− 1)ζp(s) =

Å
1− 1

p

ã
.

To prove the second assertion, we first consider the special case N = 1. Then
η = κ(G0) is a section of Ω over Y which extends to a meromorphic section over
X with simple poles along the cusps. We want to compute Res(η) ∈ H0(W ). We
remark first of all that since the eigenvalues of the Hecke operators acting on η are
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COLEMAN’S L -INVARIANT 7

known, they are also known on Res(η). Indeed, the eigenvalues are the same as those
acting on constant functions on W . Hence Res(η) is a constant. To determine what
the constant is we use the fact that the sum of the residues along the oriented annuli
at the “edges" of W∞ \ {cusps} is equal to zero. For the supersingular annuli this is
the orientation we used above to define ρ(f). However, the annuli around the cusps
are orientated so that the cusps are exterior to the annuli, which is opposite the one
used to compute the constant terms of Eisenstein series.

Under our assumption N = 1, there are a total of three cusps inW∞ corresponding
to the three cusps of X(2). The constant terms of G0 are the same at all of these
cusps since G0 is modular of level p. Since the natural map X −→ X0(p) is ramified
of order 2 at each of these cusps and since the constant term of G0 at the infinity
cusp is (1− p)/24 we conclude that the sum of the residues along the oriented annuli
around the cusps is (p− 1)/4. Hence the sum of the residues along the supersingular
annuli is (1− p)/4. But a simple calculation shows that the number of supersingular
annuli in X is (p− 1)/2. Hence the residue along any supersingular annulus is −1/2.
This proves (2) when N = 1.

The general case follows at once since for arbitrary N , the map X(Np, 2) −→
X(p, 2) is unramified over the supersingular annuli. This completes the proof of the
proposition.

We can remove Euler factors at p using the operator V on overconvergent modular
forms defined on q-expansions by the formula V (f)(q) = f(qp). If F is an eigenform,
then we let F 0 denote the eigenform obtained by removing the Euler factor at p.
Thus, we have the families

t0k := tk − V (tk)

G0
k := Gk − V (Gk)

f0
k := fk − α(k)V (fk)

For k ≥ 0 we let ηk := κ(Gk) and η0
k := κ(G0

k) where κ : Mk+2 −→ Hk ⊗ Ω

is the Kodaira-Spencer map. We also set gk := ν(tk) and g0
k := ν(t0k). Then since

θk+1t0k = G0
k it follows that

∇(g0
k) = G0

k.

Finally, for each integer k ≥ 0 we may let sk := I∞(fk) be the Coleman integral of
fk defined in section 1. Then sk is a flabby section of Hk over W∞. This section is
characterized by the property that

s0k := sk −
α(k)

pk+1
· Φ(sk)

is a rigid analytic section of Hk over Z†∞. Hence there is an overconvergent modular
form φ0

k ∈M
†
−k such that

ν(φ0
k) = s0k.
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8 G. STEVENS

Hence θk+1(φ0
k) = f0

k . Finally, set

ωk := κ(fk),

ω0
k := κ(f0

k ).

4. Some Pairings

As in the introduction, we fix an integer k0 ≥ 0. For each integer k ≥ 0 cup
product on the de Rham cohomology of the fibers of E/X induces a natural pairing
[·, ·] : Hk ×Hk+k0 −→Hk0 . This pairing induces natural pairings

[·, ·] : Hk ×Hk+k0 ⊗ Ω −→ Hk0 ⊗ Ω;

[·, ·] : Hk ⊗ Ω×Hk+k0 −→ Hk0 ⊗ Ω.

Proposition 4.1. — These pairings satisfy the following identity for all x ∈ Hk, and
y ∈Hk+k0

∇[x, y] = [x,∇y] + [∇x, y].

Proof. — This follows from the product formula for differentiation.

We will use a superscript † to denote overconvergent sections of a sheaf. For exam-
ple, H †

k := Hk(Z†∞). We may then define pairings

〈·, ·〉 : H †
k ×H †

k+k0
⊗ Ω† −→ H0(W,H ∗

k0
)

〈·, ·〉 : H †
k ⊗ Ω† ×H †

k+k0
−→ H0(W,H ∗

k0
)

by defining 〈x, y〉 := Res([x, y]) where Res : H †
k0
−→ H0(W,H ∗

k0
) is the residue map.

Recall the Hecke operators U := Up and w from §8 of [2]. On q-expansions of
modular forms U is given by

U :
∑
n≥0

anq
n 7−→

∑
n≥0

anpq
n.

The operator w acts on Hk0(W ) and satisfies w2 = pk0 on this space. Hence

Wp := p−k0/2w

acts as an involution. Moreover, from §11 of [2] we have Φ = w on horizontal sections
of Hk0 over W , hence Φ = pk0/2Wp on H0(W,H ∗

k0
).

Proposition 4.2. — Let k, k0 be non-negative integers and let g ∈ M†−k, f ∈ M
†
k+k0

,
and h ∈M†k+2. Then the following assertions hold.

1. For x = ν(g) ∈H †
k and ω = κ(f) ∈H †

k+k0
⊗Ω† we have 〈x,Φ(ω)〉 = pk+

k0
2 +1 ·

Wp(〈U(x), ω〉);
2. For η = κ(h) ∈ H †

k ⊗ Ω† and y ∈ H †
k+k0

we have 〈η,Φ(y)〉 = pk+
k0
2 ·

Wp(〈U(η), y〉).
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COLEMAN’S L -INVARIANT 9

Proof. — Since pk0/2Wp = Φ and p · Φ ◦Res = Res ◦ Φ we have

pk+
k0
2 +1 ·Wp(〈U(x), ω〉) = pk · 〈ΦU(x),Φω〉

= pkρ(ΦU(g) · Φ(f))

= ρ(g · Φ(f))

= 〈x,Φ(ω)〉.

This proves (1) and (2) is proved similarly.

5. Proof of Theorem B

The operator Wp is an involution on H0(W,Hk0). We let superscript + denote
projection to the +-component under the action of Wp. Consider the function
ψ : X −→ H0(W,Hk0)+ defined by

ψ(k) := ρ(t0kf
0
k+k0)+ ∈ H0(W,Hk0)+.

Since t0kf
0
k+k0

is an analytic family of overconvergent modular forms of weight k0

we see at once that ψ(k) is an analytic function of k defined on a neighborhood of
0 in X . For the proof of Theorem B we will calculate ψ(0) in two ways. First, by
direct calculation we express ψ(0) in terms of ρ(f). Then we apply the product rule
(Proposition 2) to express ψ(0) in terms of σ(f). Comparing these two expressions,
Theorem B follows.

Define u(k) := p−k0/2 · α(k), the “unit part" of α(k).

Lemma 5.1. — We have

ψ(0) = −1

2
·
Å

1− 1

p

ã
· u′(k0) · ρ(f).

Proof. — For an arbitrary integer k ≥ 0 we have

ψ(k) = ρ
(
t0kf

0
k+k0

)+
= 〈g0

k, ω
0
k+k0〉

+.

We also have

〈g0
k, ω

0
k+k0
〉 = 〈gk, ω0

k+k0
〉

=
¨
gk, ωk+k0 −

α(k+k0)
pk+k0+1 Φ(ωk+k0)

∂
= 〈gk, ωk+k0〉 −

α(k+k0)

pk0/2 Wp(〈U(gk), ωk+k0〉)
= 〈gk, ωk+k0〉 − u(k + k0) ·Wp(〈gk, ωk+k0〉).

The first equality above follows from three facts: (1) g0
k − gk is in the image of Φ;

(2) ω0
k+k0

is in the kernel of U ; and (3) the image of Φ is perpendicular to the kernel
of U by Proposition 4.2. The third equality follows from Proposition 4.2(1). The last
equality above follows from the fact that the Eisenstein series tk is an eigenform for
the U -operator with eigenvalue 1, hence U(gk) = gk.
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10 G. STEVENS

Now project the above identity to the +-component for Wp to get

ψ(k) = (1− u(k + k0)) · 〈gk, ωk+k0〉+

=
1− u(k + k0)

k
· ρ(ktkfk+k0)+.

Letting k → 0, using Propostion 3.1(1), and noting that ρ(f)+ = ρ(f) we obtain

ψ(0) = −1

2
·
Å

1− 1

p

ã
· u′(k0) · ρ(f)

and the lemma is proved.

Let C∞ := Z†∞ \Z∞. Then C∞ is a union of concentric annuli in the supersingular
annuli. Note that the pairings 〈x, y〉 are well-defined so long as x, y are rigid on C∞.
In particular we have a well-defined pairing

〈·, ·〉 : Ω1(C∞)×Hk0(C∞) −→Hk0(W )∇.

defined by 〈ω, h〉 = ResW (hω), where this latter is defined to be the unique horizontal
section on W extending ResC∞(hω).

We now turn to an application of Coleman’s integration theory. In what follows,
we will write a subscript flog to denote flabby log-analytic sections of a rigid ana-
lytic sheaf. Such sections are, by definition, rigid analytic on the residue disks in the
ordinary part of X and are log-analytic on the supersingular annuli. For details, see
§10 of [2] and also [1].

Lemma 5.2. — Let e ∈ Oflog(W∞) be any Coleman integral of η0 (well-defined up to a
constant). Restrict e to the supersingular annuli W and let h = e−Wp(e) ∈ Olog(W ).
Let z = h · ρ(f) ∈ Hk0,log(W ), and let z0 := z − p−1−k0/2Φ(z) ∈ Hk0,log(C∞). Then
z, z0 have the following properties.

1. z0 is rigid on C∞.
2. sk0 + z is rigid on W .
3. 〈η0, z0〉 = 0.
4. Wp(z) + z = 0 on the supersingular annuli W .

Proof. — (1) Since e is a Coleman integral of η0, we have e0 := e− p−1Φ(e) is rigid
on Z†∞. Since Wp(η0) = −η0 on X, we have Wp(e) + e is constant on W . It follows
that h0 := h− p−1Φ(h) is also rigid on C∞. On the other hand, Φ(ρ(f)) = pk0/2ρ(f).
Hence z0 = h0 · ρ(f), which is rigid on C∞.

(2) By definition, ∇(sk0) = κ(f). Hence, ResW (∇(sk0)) = ρ(f). On the other hand,
ResW (∇(z)) = ResW (dh) · ρ(f). But dh = 2η0 and we have shown in Proposition 3.1
that ResW (η0) = −1/2, hence ResW (∇(z)) = ρ(f). We therefore have ResW (∇(sk0 +

z) = 0 and it follows that sk0 + z is rigid on W , as claimed.
(3) We have 〈η0, z0〉 = 〈η0, h0〉 · ρ(f). Moreover, 〈η0, h0〉 = 〈η0

0 , h
0〉 because

the image of Φ is orthogonal to the kernel of U . But, 〈η0
0 , h

0〉 = ResW (h0η0
0) =

1
2ResW (h0dh0) = 0, since h0dh0 is an exact differential on C∞.

(4) Since Wp(ρ(f)) = ρ(f), this follows immediately from the definition of z.
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