12. INVARIANTS OF TERNARY QUADRATIC FORMS

by

Irene I. Bouw

Abstract. — This paper deals with Gross-Keating invariants of ternary quadratic forms over \mathbb{Z}_{ℓ} . The main technical difficulties arise in residue characteristic $\ell = 2$. In this case, we define the Gross-Keating invariants in terms of a normal form. We give an alternative, less computational approach for anisotropic quadratic forms.

Résumé (Invariants de Gross-Keating pour les formes quadratiques ternaires)

Cet article concerne les invariants de Gross-Keating pour les formes quadratiques ternaires sur \mathbb{Z}_{ℓ} . Les difficultés principales n'apparaissent qu'en caractéristique résiduelle $\ell = 2$. Dans ce cas, nous déterminons les invariants de Gross-Keating en termes d'une forme normale. Pour les formes anisotropes nous donnons une approche plus directe.

This note provides details on [**GK**, Section 4]. The main goal is to define and compute the Gross-Keating invariants a_1, a_2, a_3 of ternary quadratic forms over \mathbb{Z}_{ℓ} (Definition 1.2). If $a_1 \equiv a_2 \mod 2$ and $a_3 > a_2$ we define an additional invariant $\epsilon \in \{\pm 1\}$ (Definition 2.7, Definition 4.8). If $\ell \neq 2$ every quadratic form over \mathbb{Z}_{ℓ} is diagonalizable, and it is easy to determine these invariants from the diagonal form (Section 2). If $\ell = 2$ not every quadratic form is diagonalizable. Moreover, even for diagonal quadratic forms it is not straightforward to determine the Gross-Keating invariants. We determine a normal form in Section 3 and compute the invariants in terms of this normal form (Section 4). In Section 5 we determine explicitly when a ternary quadratic form is anisotropic. A complete table can be found in Proposition 5.2 (non diagonalizable case) and Theorem 5.7 (diagonalizable case). In Section 6, we give an alternative definition of the Gross-Keating invariants for anisotropic quadratic forms. The results of Section 6 are due to Stefan Wewers, following a hint in [**GK**, Section 4].

Our main reference on quadratic forms over \mathbb{Z}_{ℓ} is [C, Chapter 8]. Most of the results of this paper can also be found in the work of Yang, in a somewhat different

²⁰⁰⁰ Mathematics Subject Classification. — 11E08.

Key words and phrases. — Ternary quadratic forms, Gross-Keating invariants, anisotropic quadratic forms.

form. The Gross-Keating invariants are computed in [**Y1**, Appendix B]. The question whether a given form over \mathbb{Z}_2 is isotropic or not (Section 5) is discussed in [**Y2**].

I would like to thank M. Rapoport for comments on an earlier version.

1. Definition of the invariants a_i

In this section we give the general definition of the Gross-Keating invariants a_i of quadratic forms over \mathbb{Z}_{ℓ} which are used in [**GK**].

Let L be a free \mathbb{Z}_{ℓ} -module of rank n and choose a (for the moment) arbitrary basis $\psi = \{\psi_1, \psi_2, \ldots, \psi_n\}$. For the application to [**GK**] we are only interested in the case n = 3 of ternary quadratic forms. Let (L, Q) be an integral quadratic form over \mathbb{Z}_{ℓ} , that is,

$$Q(x) = Q\left(\sum x_i\psi_i\right) = \sum_{i\leq j} b_{ij}x_ix_j, \quad \text{with } b_{ij}\in\mathbb{Z}_\ell.$$

Put $b_{ji} = b_{ij}$ for j > i. If we want to stress the dependence of the b_{ij} on the basis, we write $b_{ij}(\boldsymbol{\psi})$ for b_{ij} . We write (x, y) = Q(x + y) - Q(x) - Q(y) for the corresponding symmetric bilinear form and $B = ((\psi_i, \psi_j))$ for the corresponding matrix. Note that

$$B = (B_{ij}), \quad \text{where} \quad B_{ij} = \begin{cases} b_{ij}, & \text{if } i < j, \\ 2b_{ij}, & \text{if } i = j \end{cases}$$

In the rest of the paper we only use the b_{ij} and not the B_{ij} , for simplicity. We denote by ord the ℓ -adic valuation on \mathbb{Z}_{ℓ} . We always suppose that Q is regular, that is, $\det(B) \neq 0$.

Changing the basis multiplies the determinant of B by an element of $(\mathbb{Z}_{\ell}^{\times})^2$. Therefore the determinant is a well defined element of $\mathbb{Z}_{\ell}/(\mathbb{Z}_{\ell}^{\times})^2$.

Lemma 1.1. — Suppose that either $\ell \neq 2$ or n is odd. Define

$$\Delta = \Delta(Q) = \frac{1}{2} \det(B).$$

Then $\Delta \in \mathbb{Z}_{\ell}$.

Proof. — The lemma is obvious if $\ell \neq 2$. Suppose that $\ell = 2$ and n odd. Write $\Delta = \sum_{\sigma \in S_n} 2^{\delta(\sigma)} d(\sigma)$, where $d(\sigma) = (-1)^{\operatorname{sgn}(\sigma)} \prod_{i=1}^n b_{i\sigma(i)}$ and $\delta(\sigma) + 1$ is the number of $i \in \{1, 2, \ldots, n\}$ which are fixed by σ . The only problematic terms are those with $\delta(\sigma) = -1$. Suppose that σ acts without fixed points on $\{1, 2, \ldots, n\}$. Then $\sigma^{-1} \neq \sigma$, since n is odd. The matrix $((\psi_i, \psi_j))$ is symmetric. It follows that $d(\sigma) = d(\sigma^{-1})$, hence $2^{\delta(\sigma)} d(\sigma) + 2^{\delta(\sigma^{-1})} d(\sigma^{-1}) \in \mathbb{Z}_{\ell}$.

We now come to the definition of the Gross-Keating invariants of a quadratic form. Let $\boldsymbol{\psi} = (\psi_1, \psi_2, \dots, \psi_n)$ be a basis of L. We write $S(\boldsymbol{\psi})$ for the set of tuples $\mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{Z}^n$ such that

(1.1)
$$y_1 \le y_2 \le \dots \le y_n, \qquad \frac{y_i + y_j}{2} \le \operatorname{ord}(b_{ij}(\psi)) \quad \text{for } 1 \le i \le j \le n.$$

Let $S = \bigcup S(\boldsymbol{\psi})$. We order tuples $(y_1, \ldots, y_n) \in S$ lexicographically, as follows. For given (y_1, \ldots, y_n) , $(z_1, \ldots, z_n) \in S$, let j be the largest integer such that $y_i = z_i$ for all i < j. Then $(y_1, \ldots, y_n) > (z_1, \ldots, z_n)$ if $y_j > z_j$.

Definition 1.2. — The Gross-Keating invariants a_1, \ldots, a_n are the maximum of $(y_1, \ldots, y_n) \in S$. A basis ψ is called optimal if $(a_1, \ldots, a_n) \in S(\psi)$.

If $\boldsymbol{\psi}$ is optimal, then

(1.2) $a_i + a_j \leq 2 \operatorname{ord}(b_{ij}(\boldsymbol{\psi}))$ for $1 \leq i \leq j \leq n$, and $a_1 \leq a_2 \leq \cdots \leq a_n$.

Since Δ is well defined up to $(\mathbb{Z}_{\ell}^{\times})^2$, the integer ord (Δ) is well defined. The following lemma will be useful in computing the Gross-Keating invariants.

Lemma 1.3

(a) Suppose that n is odd, then

$$\operatorname{ord}(\Delta) \ge a_1 + a_2 + \dots + a_n.$$

(b) We have

$$a_1 = \min_{x,y \in L} \operatorname{ord} (x, y) \,.$$

(c) Define $\rho := \min_A \operatorname{ord}(\det(A))$, where A runs through the 2 by 2 minors of B. Then

$$a_1 + a_2 \le \rho.$$

Proof. — This lemma is proved in [**Y1**, Lemma B.1, Lemma B.2]. Note that the matrix T in [**Y1**] differs by a factor 2 from our matrix B. Let φ be an optimal basis. We use the notation of the proof of Lemma 1.1.

First suppose that $\ell = 2$. Write S for the set of equivalence classes in S_n under the equivalence relation $\sigma \sim \sigma^{-1}$. The proof of Lemma 1.1 shows that $\Delta = \sum_{\sigma \in \mathbb{S}} (-1)^{\operatorname{sgn}(\sigma)} 2^{\delta'(\sigma)} d(\sigma)$, where $\delta'(\sigma) \geq 0$. The choice of φ implies that

$$\operatorname{ord}(2^{\delta'(\sigma)}d(\sigma)) = \delta'(\sigma) + \operatorname{ord}\left(\prod_{i} b_{i\sigma(i)}\right) \ge \sum_{i=1}^{n} \frac{a_i + a_{\sigma(i)}}{2} = \sum_{i=1}^{n} a_i.$$

This proves (a) in this case.

If $\ell \neq 2$, define $\delta'(\sigma) = 0$ for all $\sigma \in S_n$. Then the proof works also in this case.

Since $a_1 \leq a_2 \leq \cdots \leq a_n$, it follows from (1.2) that $\operatorname{ord}(b_{ij}(\varphi)) \geq a_1$ for all $i \leq j$. On the other hand, it is obvious that $a_1 \geq \min_{x,y \in L} \operatorname{ord}(x,y)$. This implies (b).

Part (c) is similar to (a), compare to Lemma B1.ii in **[Y1]**. Let $i_1, i_2, j_1, j_2 \in \{1, 2, ..., n\}$ be integers such that $i_1 \neq i_2$ and $j_1 \neq j_2$. Write $B(i_1, i_2; j_1, j_2)$ for the corresponding minor of B. After renumbering, we may suppose that $i_1 \neq j_2$ and $i_2 \neq j_1$. Then det $(B(i_1, i_2; j_1, j_2)) = \pm (2^{\alpha}b_{i_1,j_1}b_{i_2,j_2} - b_{i_1,j_2}b_{i_2j_1})$, where $\alpha \in \{0, 1, 2\}$ is the number of equalities $i_1 = j_1, i_2 = j_2$ that hold. We conclude that ord $(\det(B(i_1, i_2; j_1, j_2)) \geq (a_{i_1} + a_{i_2} + a_{j_1} + a_{j_2})/2 \geq a_1 + a_2$. (Here we use that $a_1 \leq a_2 \leq \cdots \leq a_n$ and $i_1 \neq i_2$ and $j_1 \neq j_2$.) This proves (c).

2. Definition of the Gross–Keating invariants for $\ell \neq 2$

We start this section with an elementary lemma which holds without assumption on ℓ .

Lemma 2.1. — Choose a basis $\psi = (\psi_1, \ldots, \psi_n)$ of L. Let $\gamma_1, \ldots, \gamma_m \in L$ be linearly independent. The following are equivalent.

- (a) There exists $\gamma_{m+1}, \ldots, \gamma_n \in L$ such that the (γ_i) form a basis.
- (b) The matrix (γ₁,..., γ_m), expressing the γ_i in terms of the basis ψ, contains a m×m minor whose determinant is a p-adic unit.
- (c) If $\sum_{i=1}^{n} v_i \gamma_i \in L$ for some $v_i \in \mathbb{Q}_{\ell}$, then $v_i \in \mathbb{Z}_{\ell}$.

Proof. — This is straightforward. See also $[\mathbf{C}, \text{Chapter 8}, \text{Lemma 2.1}].$

In particular, a vector $\alpha = \sum_{i} \alpha_i \psi_i \in L$ is part of a basis of L if and only if $\min_i \operatorname{ord}(\alpha_i) = 0$. We call such vectors primitive.

We have that

(2.1)
$$2(x,y) = 2[Q(x+y) - Q(x) - Q(y)] = (x+y,x+y) - (x,x) - (y,y).$$

If $\ell \neq 2$, this implies that

(2.2)
$$\min_{x,y\in L} \operatorname{ord} (x,y) = \min_{x\in L} \operatorname{ord} (x,x) +$$

In the rest of this section, we suppose that $\ell \neq 2$. There is a $x \in L$ for which the minimum in (2.2) is attained. This vector x is primitive. Lemma 2.1 implies that x can be extended to a basis of L. We will see in Section 4 that (2.2) does not hold for $\ell = 2$; this is the main reason why things are more difficult for $\ell = 2$.

Proposition 2.2. — Suppose that $\ell \neq 2$. Then there exists a basis ψ of L such that $Q(x) = Q\left(\sum x_i\psi_i\right) = \sum_i b_{ii}x_i^2$, where $\operatorname{ord}(b_{11}) \leq \operatorname{ord}(b_{22}) \leq \cdots \leq \operatorname{ord}(b_{nn})$.

Proof. — Our proof follows $[\mathbf{C}, \text{Chapter 8}, \text{Theorem 3.1}].$

The discussion before the statement of the theorem shows that we may choose φ_1 such that

$$\operatorname{ord}(Q(\varphi_1)) = \operatorname{ord}(\varphi_1, \varphi_1) = \min_{x, y \in L} \operatorname{ord}(x, y).$$

Here we use the equality (2.2).

Choose $\varphi_2, \ldots, \varphi_n \in L$ such that $\varphi = \{\varphi_1, \varphi_2, \ldots, \varphi_n\}$ is a basis of L. As before we write $Q(\sum_i x_i \varphi_i) = \sum_{1 \le i \le j \le n} b_{ij}(\varphi) x_i x_j$. Then

$$Q(x) = b_{11} \left(x_1 + \frac{b_{12}}{2b_{11}} x_2 + \dots + \frac{b_{1n}}{2b_{11}} x_n \right)^2 + \tilde{Q}(x_2, \dots, x_n),$$

for some integral quadratic form \tilde{Q} in n-1 variables.

ASTÉRISQUE 312

We define a new basis by $\psi_1 = \varphi_1$, and $\psi_i = \varphi_i - (b_{1i}/2b_{11})\varphi_1$ for $i \neq 1$. The choice of ψ_1 ensures that $\psi_i \in L$, since $e = \operatorname{ord}(2b_{11}) \leq \operatorname{ord}(b_{1i})$. With respect to this new basis, the quadratic form is

$$Q(x) = b_{11}(\boldsymbol{\psi})x_1^2 + \tilde{Q}\left(\sum_{i\geq 2} x_i\psi_i\right).$$

The proposition follows by induction.

Remark 2.3. — Cassels ([C, Chapter 8, Theorem 3.1]) proves a stronger statement than Proposition 2.2. Namely, he gives a list of pairwise nonisomorphic quadratic forms such that every integral quadratic form is isomorphic to one of these. This stronger statement implies that the definition of the invariants a_i of Proposition 2.6 does not depend of the choice of the orthogonal basis.

We can give a simpler definition of the invariants a_i in terms of a basis ψ as in Proposition 2.2. If $\gamma \in L$ is an element such that $Q(\gamma) \neq 0$, we may define a reflection τ_{γ} by

$$\tau_{\gamma}(x) = x - \frac{2(x,\gamma)}{(\gamma,\gamma)}\gamma.$$

This is the reflection in the orthogonal complement of γ . Clearly, τ_{γ} is defined over \mathbb{Z}_{ℓ} if and only if $\operatorname{ord}(\gamma, \gamma) = \min_{x \in L} \operatorname{ord}(x, x)$. (In fact, this also holds for $\ell = 2$.) Since τ_{γ} is a reflection, it is clearly invertible. The following lemma is a partial analog of Witt's Lemma ([**C**, Corollary to Theorem 2.4.1]) which holds for quadratic forms over fields.

Lemma 2.4. — Suppose that $\psi, \varphi \in L$ satisfy

$$Q(\psi) = Q(\varphi), \quad \operatorname{ord}(Q(\psi)) = \operatorname{ord}(Q(\varphi)) = \min_{x \in L} \operatorname{ord}(Q(x)).$$

Then there exists an integral isometry σ of (L,Q) such that $\sigma(\psi) = \varphi$. Moreover, σ may be taken as a product of reflections τ_{γ} .

Proof. — This is [**C**, Lemma 8.3.3]. Our assumptions on ψ and φ imply that $Q(\psi + \varphi) + Q(\psi - \varphi) = 2Q(\psi) + 2Q(\varphi) = 4Q(\psi)$. Since $\operatorname{ord}(Q(\psi)) = \operatorname{ord}(\psi, \psi) = \min_{x \in L} \operatorname{ord}(x, x) =: e$, it follows that one of the following holds:

- (a) ord $Q(\psi + \varphi) = e$,
- (b) ord $Q(\psi \varphi) = e$.

Since $\ell \neq 2$, it is also possible that both hold. If (a) holds, then $\tau_{\psi+\varphi}$ is integral and sends ψ to φ . If (b) holds, define $\sigma = \tau_{\psi-\varphi} \circ \tau_{\psi}$.

Lemma 2.5. — Suppose $u, v \in \mathbb{Z}_{\ell}^{\times}$. Then $ux_1^2 + vx_2^2 \sim_{\mathbb{Z}_{\ell}} x_1^2 + uvx_2^2$.