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12. INVARIANTS OF TERNARY QUADRATIC FORMS 

by 

Irene I. Bouw 

Abstract. — This paper deals with Gross-Keating invariants of ternary quadratic 
forms over ZL The main technical difficulties arise in residue characteristic l = 2. In 
this case, we define the Gross-Keating invariants in terms of a normal form. We give 
an alternative, less computational approach for anisotropic quadratic forms. 

Résumé (Invariants de Gross-Keating pour les formes quadratiques ternaires) 
Cet article concerne les invariants de Gross-Keating pour les formes quadratiques 

ternaires sur ZL. Les difficultés principales n'apparaissent qu'en caractéristique rési-
duelle l= 2. Dans ce cas, nous déterminons les invariants de Gross-Keating en termes 
d'une forme normale. Pour les formes anisotropes nous donnons une approche plus 
directe. 

This note provides details on [GK, Section 4]. The main goal is to define and com-
pute the Gross-Keating invariants ai1, a2 , a3 of ternary quadratic forms over zl (Def-
inition 1.2). If a1 = a2 mod 2 and a3 > a2 we define an additional invariant e { ± 1 } 
(Definition 2.7, Definition 4.8). If l≠  2 every quadratic form over TLn is diagonaliz-
able, and it is easy to determine these invariants from the diagonal form (Section 2). 
If £ — 2 not every quadratic form is diagonalizable. Moreover, even for diagonal 
quadratic forms it is not straightforward to determine the Gross-Keating invariants. 
We determine a normal form in Section 3 and compute the invariants in terms of 
this normal form (Section 4) . In Section 5 we determine explicitly when a ternary 
quadratic form is anisotropic. A complete table can be found in Proposition 5.2 (non 
diagonalizable case) and Theorem 5.7 (diagonalizable case). In Section 6, we give an 
alternative definition of the Gross-Keating invariants for anisotropic quadratic forms. 
The results of Section 6 are due to Stefan Wewers, following a hint in [GK, Section 4]. 

Our main reference on quadratic forms over Zi is [C, Chapter 8]. Most of the 
results of this paper can also be found in the work of Yang, in a somewhat different 
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form. The Gross-Keating invariants are computed in [ Y l , Appendix B]. The question 
whether a given form over Z2 is isotropic or not (Section 5) is discussed in [Y2]. 

I would like to thank M. Rapoport for comments on an earlier version. 

1. Definition of the invariants a% 

In this section we give the general definition of the Gross-Keating invariants ai of 
quadratic forms over Z^ which are used in [GK]. 

Let L be a free Z^-module of rank n and choose a (for the moment) arbitrary basis 
ip = {ipi, ip2, • • • 5 ^n}- For the application to [GK] we are only interested in the case 
n = 3 of ternary quadratic forms. Let (L,Q) be an integral quadratic form over Z^ , 
that is, 

Q(x) = Q xiwi bijXiXjj with bij G Z^ . 

Put bji = for j > i. If we want to stress the dependence of the bij on the basis, we 
write bij(ip) for bij. We write (x, y) = Q(x + y) — Q(x) — Q(y) for the corresponding 
symmetric bilinear form and B = ( (^ /0^) ) for the corresponding matrix. Note that 

B = {Bij) , where B^ = 
vij, id if <j, 
2bij, ifi=j. 

In the rest of the paper we only use the bij and not the B^, for simplicity. We denote 
by ord the £-adic valuation on Z^ . We always suppose that Q is regular, that is, 
d e t ( 5 ) ^ 0. 

Changing the basis multiplies the determinant of B by an element of (Zf )2. There-
fore the determinant is a well defined element of Zi/(Zf)2. 

Lemma 1.1. — Suppose that either £ ^ 2 or n is odd. Define 

A = A ( Q ) = 
1 
2 

det(B). 

Then A G Ze. 

Proof. — The lemma is obvious if £ ^ 2. Suppose that £ = 2 and n odd. Write 
A = J2aesn 26{a)d(o-), where d(a) = ( - l ) s s n M ]J^=1 bia{%) and 5(a) + 1 is the number 
of i £ { 1 , 2 , . . . , n } which are fixed by a. The only problematic terms are those with 
5(a) — — 1. Suppose that a acts without fixed points on {1, 2 , . . . , n). Then a~l ^ <r, 
since n is odd. The matrix ((ipi,^j)) is symmetric. It follows that d(a) = d(a~l), 

hence 25^d(a) + 25^]d(a~l) e Z£. • 

We now come to the definition of the Gross-Keating invariants of a quadratic 

form. Let xf> — (ipi,ip2, • • •, be a basis of L. We write S(ip) for the set of tuples 

y = (yi ,2/2, • • •, Vn) € ^n such that 

(1.1) Vi < V2 < • • • < 2/n, 
Vi + Vj 

2 
< ord(bij(ip)) for 1 < i < j < n. 
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Let S = US(x/>). We order tuples (yi,..., yn) G S lexicographically, as follows. For 
given ( y l , . . . , yn), ( 2 : 1 , . . . , 2n) G 5 , let j be the largest integer such that yi = zi for 
all i < j . Then (yll ...,yn)> (¿1, • • •, zn) if % > z3. 

Definition 1.2. — The Gross-Keating invariants ai,...,an are the maximum o 
(yl,..., 2/n) G 5. A basis 1/? is called optimal if (ai,..., an) G S(ip). 

If t/? is optimal, then 

(1.2) AI+ CLJ < 2 ord(bij(if>)) for 1 < i < j < n, and ai < a2 < • • • < an. 

Since A is well defined up to (Z£ ) , the integer ord(A) is well defined. The following 
lemma will be useful in computing the Gross-Keating invariants. 

Lemma 1.3 

(a) Suppose that n is odd, then 

ord(A) > a\ + «2 + V an-

(b) We have 

ai = min 
x,y£L 

oid (x. y). 

(c) Define p := min^ ord(det(A))7 where A runs through the 2 by 2 minors of B. 
Then 

Q>i + a2 < p-

Proof. — This lemma is proved in [ Y l , Lemma B.l, Lemma B.2]. Note that the 
matrix T in [Yl] differs by a factor 2 from our matrix B. Let (p be an optimal basis. 
We use the notation of the proof of Lemma 1.1. 

First suppose that £ — 2. Write § for the set of equivalence classes in Sn un-
der the equivalence relation a ~ <T_1. The proof of Lemma 1.1 shows that A = 

ecS {~lf^)26'^d{a), where ó'(cr) > 0. The choice of <p implies that 

ord(26'^d(cr)) =<J/(( j)+ordi 

i 
bia(i) > 

n 

i=l 

ai+ao(i) 

2 

n 

i=l 
a{. 

This proves (a) in this case. 
If £ ^ 2, define S'(a) = 0 for all a G Sn. Then the proof works also in this case. 
Since a\ < 02 < • • • < an, it follows from (1.2) that ord(6^-(y?)) > ai for all i < j . 

On the other hand, it is obvious that a\ > mmXjyeL ord (x, y). This implies (b). 
Part (c) is similar to (a), compare to Lemma Bl.ii in [Y l ] . Let ii)I2,ji,J2 £ 

{1 ,2 , . . . , n } be integers such that i\ ^ ¿2 and j \ ^ 32- Write B(i\^2\3x^32) for 
the corresponding minor of B. After renumbering, we may suppose that i\ ^32 
and i2 ^ ji. Then det(B(iu i2; j i , j2)) = ±{2abh,JIbi2,j2 ~ K^^JI), where a G 
{ 0 , 1 , 2 } is the number of equalities i\ = 31^2 = 32 that hold. We conclude that 
ord(det(i3(ii, %2\ j i , 3 2 ) ) > ( « ¿ 1 + Ui2 + a j i + a j 2 ) / 2 > fli + «2- (Here we use that 
« i < «2 < • • • < an and i\ ^ ¿2 and ji ^32-) This proves (c). • 
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2. Definition of the Gross-Keat ing invariants for £ ^ 2 

We start this section with an elementary lemma which holds without assumption 
on £. 

Lemma 2.1. — Choose a basis ip — (̂ i,...,wn of L. Let 7 1 , . . . , 7m G L be linearly 

independent. The following are equivalent. 

(a) There exists 7 m + i , . . . , 7n G L such that the (7^) form a basis. 
(b) The matrix ( 7 1 , . . . , 7m), expressing the 7^ m terms of the basis ij), contains a 

ra x ra minor whose determinant is a p-adic unit. 
(c) / / n 

2=1 
^ 7 i G L for some Vi G Q¿, ¿/¿en v¿ G Z¿. 

Proof — This is straightforward. See also [C, Chapter 8, Lemma 2.1]. 

In particular, a vector a = atibi G L is part of a basis of L if and only if 

minj ord(oij) = 0. We call such vectors primitive. 
We have that 

(2.1) 2 (x, y) = 2[Q(x + y)- Q(x) - Q(y)\ = (x + y,x + y)- (x, x) - (y, y). 

If I 7̂  2, this implies that 

(2.2) mm 
x,yc L 

Did (x. y) — min ord (x. x) . 

In the rest of this section, we suppose that £ 7̂  2. There is a x G L for which the 
minimum in (2.2) is attained. This vector x is primitive. Lemma 2.1 implies that x 
can be extended to a basis of L. We will see in Section 4 that (2.2) does not hold for 
£ = 2; this is the main reason why things are more difficult for £ = 2. 

Proposition 2.2. — Suvnose that £^2. Then there exists a basis ib of L such that 

Q(x) = Q Xi^x 

i 

biiX^ , where ord(òn) < ord(ò22) < • • • < ord(ònn). 

Proof. — Our proof follows [C, Chapter 8, Theorem 3.1]. 
The discussion before the statement of the theorem shows that we may choose tpi 

such that 

ord(Q((/?i)) = ord ((/?i, (fi) = min 
x,ycL 

ord (x, y). 

Here we use the equality (2.2). 
Choose u?2, • • •, tpn £ L such that u> = \ipi, o?2 • • •, tpn} is a basis of L. As before 

we write Q( i xiei l< i<j i<n bij(ip)xiXj. Then 

Q(x) = on xi -f 
bl2 

2bn 
xo ^— 

bin 

26n 

2 

f Q(x2l . .. ,xn), 

for some integral quadratic form Q in n — 1 variables. 
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We define a new basis by ipi = <pi, and ipi = p>i — (b\i/2bn)(pi for i ^ 1. The 
choice of wl ensures that ipi G L, since e = ord(26n) < ord{bn). With respect to this 
new basis, the quadratic form is 

Q(x) = b11($)x\ + Q 
i>2 

xlibl 

The proposition follows by induction. 

Remark2.3. — Cassels ([C, Chapter 8, Theorem 3.1]) proves a stronger statement 
than Proposition 2.2. Namely, he gives a list of pairwise nonisomorphic quadratic 
forms such that every integral quadratic form is isomorphic to one of these. This 
stronger statement implies that the definition of the invariants ai of Proposition 2.6 
does not depend of the choice of the orthogonal basis. 

We can give a simpler definition of the invariants ai in terms of a basis tj) as in 
Proposition 2.2. If 7 G L is an element such that Q{^) ^ 0, we may define a reflection 
r7 by 

T*y(x) — x — 
2 ( x , 7 ) 

( 7 , 7 ) 

This is the reflection in the orthogonal complement of 7. Clearly, r7 is defined ove 
!Li if and only if ord (7 ,7 ) = min^^ ord (x, x) . (In fact, this also holds for £ = 2. 
Since r7 is a reflection, it is clearly invertible. The following lemma is a partial analoj 
of Witt's Lemma ([C, Corollary to Theorem 2.4.1]) which holds for quadratic form 
over fields. 

Lemma 2.4. — Suppose that ib,<p G L satisfy 

Q(V) = Q(<p), o r d ( Q M ) = o r d ( Q M ) = min 
xeL 

oid{Q(x)). 

Then there exists an integral isometry a of (L,Q) such that cr(ip) = (p. Moreover, a 
may be taken as a product of reflections r 7 . 

Proof — This is [C, Lemma 8.3.3]. Our assumptions on ip and p> imply that 
Qw+ if) + Q  -<p) = 2Q($) + 2Q{ip) = 4Q(^). Since ord(Q(^)) = ord (^) = 
m h w ^ ord (x, x) =: e, it follows that one of the following holds: 

(a) ordQ(x/j + cp) = e, 
(b) ordQ(ip — (p) = e. 

Since £ ^ 2, it is also possible that both hold. If (a) holds, then r̂ +(/7 is integral and 
sends i\) to (p. If (b) holds, define a — r^_^ or,/,. • 

Lemma 2.5. — Suppose u,v EZf . Then ux\ + vx\ ~ze %i + uvx\. 

S O C I É T É M A T H É M A T I Q U E D E FRANCE 2007 

7-


