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ON THE ORDERS OF ZERO OF CERTAIN FUNCTIONS

by

W. Dale BRWNAWELL’

I. INTRODUCTION

This is a report on joint work with D. W. Masser into the possible
order of vanishing of a certain class of analytic functions. A complete exposi-
tion of our most general result and its relation to the previous work of
Ju. Nesterenko [4] is given in [1] . That paper was written expressly for the
use of fellow practitioners, of transcendence theory.

For this conference it seemed appropriate to present a variant of
the proof of the main theorem of [1] , this time assuming familiarity with
commutative algebra from the outset. The major change is the use here of the
Hilbert characteristic function Ba(a,t) for inhomogeneous ideals & . In this
way we avoid the technicalities involved in keeping track of the order of
vanishing while homogenizing and dehomogenizing ideals. (These technicalities
seem indispensable however for handling denominators in some of Masser's most
recent work). Since we have not found a reference for the properties of Ha(&qt)
in the literature (see [2,p. 157] however), we discuss them in a short appendix
following the body of the proof. -

We are concerned here with solutions of a fixed system of differential
equations

¢ Research supported in part by the National Science Foundation.
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(1) fi = Pi(fl""'fn) (1€ i< n)

where Fl""'Fn are non-zero polynomials of total degree at most d. For a given
set of initial values 'e = ( 91,..., en) , we denote by ¥(z;9) the corresponding
solution of (1) analytic at the origin, i.e. the coordinates fl(z;e) ,...,fn(z;e)
satisfy (1) and £(0.9) = © . In this paper we will deal with M+ 1 fixed such
initial conditions given by Oy, © s-+-s Oy

Let & be an ideal of R = C[xl,...,xn] . For O € m € M we define

ord @& = min ord P(f(z;@m)),
n PEQ
P#£0
where ord on the rigl;xt hand side denotes the order of zero at the origin with the
usual proviso that ord O = @ . Say & is generated by P1""'Ps‘ Then clearly

ord & = min ord P (£(z:0 ).

If @ has rank r (we avoid the term "height" because of other associations in
transcendence theory), we can suppose that the indices are chosen in such a way
that Pl" .o 'Pr have total degrees at most D1> ces P Dx_, respectively, whereas
P ,...,Ps have total degrees at most Dr' Let T=D

... D_, and recall that

r+1 1 r
d < max ideg F i Then we can state our main result.
Theorem : Assume that ordma is finite for O<K m< M. Then if r<nandd > 1,
we have

M Pl 2n-r—1

z oxrdm a <@n + M(aT) 3

m=0

while if r < n and 4 = 1, we have

M . o
I ord @< (n-r+1)n'1’"-r + (n-rymrd™ 77! .

1
m=0
Finally if r'= n, then
M

T ordme. <T.
m=0
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II. UNMIXING

Because we can estimate the degree of an ideal of the principal class
(rank = minimal number of generators) throuch Proposition 4A, we would be very happy
if r = s. Since that is not always the case, we show that for our purposes, it is
always possible to replace & by an ideal &; of rank r and generated by r polynomials
of degrees at most Di""'D:’ respectively, such that

ord @& = ord & (0<m<M).
m r m

For that the following general remark is useful.

Lemma 1 : Let Pl""’Ps be polynomials and let ‘91,..., '9k be ideals such that for

each 1 € ¢ < k, not all of PireeosP lie in 19(. Then for some integer, 1 < A € ks,

k
s-1
P1+>\P2 oo+ A P '4 u,,9k.

Proof : 1If each of the Q)‘ = P + )‘P P\ s (1€ A < ks) lies in some +J,
then by the Box Principle, at least s of the Q)‘ lie in the same 9. Inverting the
corresponding Vandermonde determinant shows then that Pl"" 'Ps all lie in that same Vv
as well. This contradiction establishes the lemma.

For a vector @ = (61,-..,6 n) of ¢" we denote by M(O) the correspon-

ding maximal ideal (xl- 91" cer X< en) . For brevity we write yeeos instead
of M eo) .-..,7’[( G)M) , respectively. For OS m < M we write (X(m) for the contracted

extension
a® _ @ g,
m

where a/ denotes the extension of (L to the localization of R = ¢ [xi"" ,Xrg at
”Lm Further we write Q for the contracted extension with respect to the multipli-
cative set S = R\ U 7fb , i.e. d, = (QQ Rg ) N R. We see that a is also obtained
by deleting from a primary decomposition of & components not lying in any 77&

(0 €«m < M), just as a‘“” is obtained on deleting components not in m Therefore

* M
2) Q - ﬂa,(m)

m=o
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(m)

Since every element of & is the quotient of an element of &

by an elonent outside 1& we see that ord cm ord @ . Therefore from
a c@c a®™ ve deduce that

* (m)
(3) oran = ordmm - ordma- (0< m< M)

Proposition 2 : If in addition to the hypotheses of the Main Theorem we have

0 <ord & (O<m< M ,

then there are polynomials Ql""’Qr in @ with deg Ql< D
that the ideal G; = (Q,---,Q ) satisfies

rees,deg Q‘r < D_ such

1

rankar-':,

ord X = ord & (O<m< M),
m r m

*
-4 -
Geg X < D,...D =T.
Proof : Since ordma is assumed to be finite for each m, the polynomials P such
that oxde > ordm& form an ideal which we denote -Gm. By Lemma 1 we can select
A € Z such that
M

-1
L e N AT
=0

*
Set Ql = (Q1 . Then rank Ql = 1 and ord Q = ord &, 0 < m< M. Now Q~ is princi-
pal with genezatoz obtained from Q1 by deleting a11 factors not in any 7& O<m< M.
Since ord 01 = ord & > 0, Q, is not constant and rank % = 1. We deduce from

Proposition 4A of the appendix that
*
deg th <D

1 ’

which is what was claimed for.r = 1.
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For r > 1 we choose polynomials 92""'9:' inductively of the form

_ .
(4 Q =B 4AR . bt A] 1»3

such that the ideals ui - (Ql"“'Qi) satisfy

*
rank Qi = i, deg &i < »,...p, .

Moreover the form of selection given in (4) guarantees that for 1€ i< r
cnrdm Qi = ¢:om:1m a (O<m< M

The selection has already been made for i = 1, and now we show how to find Qi+1 with
the desired properties once 31 has been obtained (i < r).

Fix a prime component T°of 31 of rank i' (necessarily so hy the
Cohen-Macauley Theorem [5-II ,p310] ). If Py
inductively from (4) that so do Pi' Pi-l""'Pl' Thus @ would be contained in P
and rank @ <i, contrary to our assumption that rank Q= r. Thus at least one of
P ,yr---+P, does not lie in P. So by Lemma 1, there is a Q,,, of the form (4) not
in any prime component of QL' i.e. a:l. : Qi+1 - Qi Therefore by Proposition 4A

yr-++sPg all lay in 1, Then we see

i+1
< .
deg ai +1 (deg Qi)D 141’ which establishes Proposition 2

of the appendix, for & . = (Qi, Qy,q) We have rank & = i+l and

III. THE CASE n = r.

To deal with this case we require a fundamental result concerning

exponents of ideals.

Lemma 3 : If q is a primary ideal of length 2 and exponent e, then e < £ .

Proof : Say that ? is 1o-primry. Then ﬁe: g, and e is the least positive
power of Plying in q .1f e=1, then fP= ? and there is nothing to show. If
e > 2, the ideals ?1 - ?: pi (0< i < e) are P -primary [5-I, p.154] . Since
‘Pe-l‘P - Pe c \1 ' Pc 79_1, and so 7"’- 7 1" Thus we obtain e primary ideals

9= % S e S9es " P
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If we can show that these inclusions are strict, then the lemma will
follow. But 'p?k+1 < ?k (0 <k < e-1). So if scme ?k = ?k'bl' then

1 ) 3
P¥k+2 < $k+1 = ?k' Therefore Pk+ ?k+2 cp ?k < 7 and 7k+2 < 7k+1' Conse-

quently ?k = ?kﬂ = ?k +2° Repeating the argument shows that

Fx= Frrr = =Femr

Thus  P= § : PX and "< §. By the definition of e, e < k+1 . But k+1< e-1
by assumption. This contradiction shows that the inclusions are strict and establishes

the lemma.

Proposition 4 : Let ? be primary of rank n such that cn:dm ? is positive but
finite for some O € m € M. Then 7lm is the associated prime ideal of L7am:i

ord q < deg ?

Proof : Since ord q >0, we have ?C’lm Because rank 7- n, % is the associated
prime. Let e be the exponent of ? Then

e
< .
Mma=g<h
Since for any ideals k,£
ord (k nl) < ordm(EL) = ord R+ oz-dm.t,
we see that
ord ‘7 < e ord mm'
From Proposition 2A of the appendix and Lemma 4 we see that
e < length 7< deg ?

1£ @ = (8;,...,0 ), then ord mm = min; ord (f (z:q) - 6,), and so

if ord mm > 1, then each fj:(z; ©,) vanishes at the origin. Now differentiation of
(1) leads to the relations

10
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n Bri
£1(z;0 ) =% 57| _ £i1(z:0) (1< i< n).
i m §m1 3xj f(z:em) j m

Thus

ordz_of;(z; em) > minjordz_ofi (z; em) >0 (1€i< n).

This implies that ordz_ofi (z; em) = o, 1< i< n. Then ordm Mm =wo, a contradiction
which completes the proof of the proposition.

Proof of the case n = r.

We may clearly assume that ordm &> 0 (0 m< M) simply by renumbering
and tak}ng M smaller if necessary. For if the analogous bound holds on the sum of the
remaining ordma , then the desires bound will hold on the full sum. We apply Proposi-
tion 2 to @ to obtain & . 1f &n = qo Ne..n gu is the primary decomposition of
&: , then by the first half of Proposition 4, N = M, and we may take ?m to be
? m—ptimary (0O< m< M). By the second half of Propositions 3A and 4A of the appen-

dix and by Proposition 4,

M
* .
T > deg Qn = I deg ?m

M M
> 1 orq @ = I ora a,
m=0 m=o

since ord & = ord & = ora @™ = ora g (0O m< M). This proves the assertion of
m m n m n mJm

the theorem for r = n.

IV. INCREASING THE LOCAL RANK

In this section we develop a procedure which allows us to cope with
ideals of rank less than n. We inductively produce polynomials Qt +1""'Qn of pre-
dictably bounded degrees D r+1""'Dn' respectively, through differentiation of the
generators of Qr such that for r € i € n the ideals

n B, = (&0, 000,

satisfy

1
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(8) rlnké:n) =i O< m<M ,
' L' <p,..p

(9) deg i 100°Dy
and
(10) ord X-wW,_ . < ord B # = (0< m< M
where

k J_y 53

1 &%, ifd> 1

j=o

¥ = X
T L D)., ifd=1.
. j=o

(Recall that d is our upper bound on the degree of the polynomials Fi""’Fn in (1)

and IJ1 bounds the degree of all the generators of (). As we shall see, wi-r-l is

a bound on the number of derivatives we may have to take to obtain Q 1’ "'Qi'
Because of its importance for the Main Theorem, we state the result for i = n as

I3

a proposition. Set ‘
21-:—1
(ar) ' ifar1
o, -{

D ifas=1

1!

Proposition 5 : Given &r of Proposition 2 with

“n-r—l < ordma.r#n (O<m< M,

there are then polynomials Qr+1""'Qn with deg Qi‘ D
following holds for ‘&n = (Qr'QrH"”'Qn) :

(r < i € n) such that the

i

ranké(m) =n,ord & -w < ord 4@ (0O<m< M
n m r n- m n

r-1
and

*
dega&n < p,...D_.

12
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Proof : As mentioned above, the construction of the -6 1"""5:3 with the
properties (8), (9), (10) is inductive. If we set w_l = O, we may cons:l.det-é G.
to start it off. For the inductive step assume that (8), (9), (10) hold for some

'51 of the form (7), r € i < n. Consider the derivation

A= zp_L
3=1 3 9%y

defined on R = c[xl,...,xn] . Clearly if P € R has total degree G, then AP has
total degree at most G + d - 1. Also if f = (fl""'fn) is an analytic solution of (1)
then for any polynomial P € R,

- a -
AP(f) = = P(f).

So if ozd P > 1, then ord AP = ord P -1 (CAm<M). Since the :Ldeals-é( m) have
rank i and .& is generated by i elements, -&( m) is unmixed by the Cohe.n—nacauley
Theorem [S-II, p.310] . Therefore in particulu' all primary components of .5 have
rank i. For the next few paragraphs we consider one fixed such component. de its
associated prime 19

From Lemma 3, Propositions 2A and 3A of the appendix, and our induction
assumption, we deduce that ’
(11) < a' <D D

e deg i IREA
for the exponent e of ? . We claim that

e *x
(12) ) A .&i ¢ P

* *
Since &1 < 795 ”{n for some 0 < m < M, ordm P is positive but bounded by ordm-bi.
Choose a polynomial P € 7 with ord P = ord P. since

ord AP = ord P-1 < ord P,
m m m
AP does not lie in P. Let Q be a polynomial lying in every primary component
*
'y ? of -@i and not lying in P _ for example the product of elements from
each Q'\ P . From the definition of exponent we know that P® lies in ? so P%Q 1lies
*

in j - Moreover since P lies in ’P,

2%(p%) = er(a P (mod P).

13



